- -

New experimental sublimation energy measurements for some relevant astrophysical ices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New experimental sublimation energy measurements for some relevant astrophysical ices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Luna Molina, Ramón es_ES
dc.contributor.author Satorre Aznar, Miguel Ángel es_ES
dc.contributor.author Santonja Moltó, Mª del Carmen es_ES
dc.contributor.author Domingo Beltran, Manuel es_ES
dc.date.accessioned 2015-04-23T09:56:17Z
dc.date.available 2015-04-23T09:56:17Z
dc.date.issued 2014-06
dc.identifier.issn 0004-6361
dc.identifier.uri http://hdl.handle.net/10251/49166
dc.description.abstract Context. The knowledge of the sublimation energy of ices allows us to better understand the dynamics between surfaces and atmospheres of different environments of astrophysical interest where ices are present. Aims. This work is intended to provide sublimation energy values for a set of pure ices (CO, CH4, CO2, N-2, and NH3) using a new experimental procedure. The results were compared to some values obtained by other authors under different conditions and/or methods, to check the reliability of this new method. Methods. We used the frequency variation obtained from a quartz crystal microbalance to calculate the sublimation energy from the Polany-Wigner equation for the first time. Results. The results obtained are relevant since there are few previous values of sublimation energy reported on these molecules in these conditions of pressure and temperature, which are representative of astrophysical regions. These values are needed in models used to interpret dynamics of icy surfaces. In general, our results compare well to other ones obtained by different methods and complement those previously available. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Educacion y Ciencia (Cofinanced by FEDER funds) AYA 2009-12974. en_EN
dc.language Inglés es_ES
dc.publisher EDP Sciences es_ES
dc.relation.ispartof Astronomy and Astrophysics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Planets and satellites: atmospheres es_ES
dc.subject Planets and satellites: physical evolution es_ES
dc.subject Planets and satellites: surfaces es_ES
dc.subject Interstellar ices es_ES
dc.subject Molecular clouds es_ES
dc.subject Water-ice es_ES
dc.subject Spectral properties es_ES
dc.subject Carbon-monoxide es_ES
dc.subject Surface ices es_ES
dc.subject CO2 ices es_ES
dc.subject Desorption es_ES
dc.subject Ammonia es_ES
dc.subject Methane es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title New experimental sublimation energy measurements for some relevant astrophysical ices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1051/0004-6361/201323249
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AYA2009-12974/ES/Estudio De Analogos De Hielos Para Astrofisica En El Laboratorio: Espectroscopia Fir Y Parametros Fisicos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Luna Molina, R.; Satorre Aznar, MÁ.; Santonja Moltó, MDC.; Domingo Beltran, M. (2014). New experimental sublimation energy measurements for some relevant astrophysical ices. Astronomy and Astrophysics. 566(27):1-8. https://doi.org/10.1051/0004-6361/201323249 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1051/0004-6361/201323249 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 566 es_ES
dc.description.issue 27 es_ES
dc.relation.senia 277302
dc.identifier.eissn 1432-0746
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Acharyya, K., Fuchs, G. W., Fraser, H. J., van Dishoeck, E. F., & Linnartz, H. (2007). Desorption of CO and O2 interstellar ice analogs. Astronomy & Astrophysics, 466(3), 1005-1012. doi:10.1051/0004-6361:20066272 es_ES
dc.description.references A’Hearn, M. F. (2005). Deep Impact: Excavating Comet Tempel 1. Science, 310(5746), 258-264. doi:10.1126/science.1118923 es_ES
dc.description.references Aharonson, O. (2004). Depth, distribution, and density of CO2deposition on Mars. Journal of Geophysical Research, 109(E5). doi:10.1029/2003je002223 es_ES
dc.description.references Armstrong, G. T., Brickwedde, F. G., & Scott, R. B. (1955). Vapor pressures of the methanes. Journal of Research of the National Bureau of Standards, 55(1), 39. doi:10.6028/jres.055.005 es_ES
dc.description.references Barucci, M. A., Merlin, F., Dotto, E., Doressoundiram, A., & de Bergh, C. (2006). TNO surface ices. Astronomy & Astrophysics, 455(2), 725-730. doi:10.1051/0004-6361:20064951 es_ES
dc.description.references Barucci, M. A., Merlin, F., Guilbert, A., de Bergh, C., Alvarez-Candal, A., Hainaut, O., … Coradini, A. (2008). Surface composition and temperature of the TNO Orcus. Astronomy & Astrophysics, 479(1), L13-L16. doi:10.1051/0004-6361:20079079 es_ES
dc.description.references Benes, E. (1984). Improved quartz crystal microbalance technique. Journal of Applied Physics, 56(3), 608-626. doi:10.1063/1.333990 es_ES
dc.description.references Bisschop, S. E., Fraser, H. J., Öberg, K. I., van Dishoeck, E. F., & Schlemmer, S. (2006). Desorption rates and sticking coefficients for CO and N2 interstellar ices. Astronomy & Astrophysics, 449(3), 1297-1309. doi:10.1051/0004-6361:20054051 es_ES
dc.description.references Bolina, A. S., & Brown, W. A. (2005). Studies of physisorbed ammonia overlayers adsorbed on graphite. Surface Science, 598(1-3), 45-56. doi:10.1016/j.susc.2005.08.025 es_ES
dc.description.references Bordalo, V., da Silveira, E. F., Lv, X. Y., Domaracka, A., Rothard, H., Seperuelo Duarte, E., & Boduch, P. (2013). CHEMICAL PROCESSING OF PURE AMMONIA AND AMMONIA-WATER ICES INDUCED BY HEAVY IONS. The Astrophysical Journal, 774(2), 105. doi:10.1088/0004-637x/774/2/105 es_ES
dc.description.references Collings, M. P., Anderson, M. A., Chen, R., Dever, J. W., Viti, S., Williams, D. A., & McCoustra, M. R. S. (2004). A laboratory survey of the thermal desorption of astrophysically relevant molecules. Monthly Notices of the Royal Astronomical Society, 354(4), 1133-1140. doi:10.1111/j.1365-2966.2004.08272.x es_ES
dc.description.references Cruikshank, D. P., Roush, T. L., Owen, T. C., Geballe, T. R., de Bergh, C., Schmitt, B., … Bartholomew, M. J. (1993). Ices on the Surface of Triton. Science, 261(5122), 742-745. doi:10.1126/science.261.5122.742 es_ES
dc.description.references Cruikshank, D. (2000). Water Ice on Triton. Icarus, 147(1), 309-316. doi:10.1006/icar.2000.6451 es_ES
dc.description.references Cuppen, H. M., & Herbst, E. (2007). Simulation of the Formation and Morphology of Ice Mantles on Interstellar Grains. The Astrophysical Journal, 668(1), 294-309. doi:10.1086/521014 es_ES
dc.description.references DOUTE, S. (1999). Evidence for Methane Segregation at the Surface of Pluto. Icarus, 142(2), 421-444. doi:10.1006/icar.1999.6226 es_ES
dc.description.references Domingo, M. 2003, Thesis, The Politechnic University of Valencia, Spain es_ES
dc.description.references Frenkel, J. (1924). Theorie der Adsorption und verwandter Erscheinungen. Zeitschrift f�r Physik, 26(1), 117-138. doi:10.1007/bf01327320 es_ES
dc.description.references Friend, D. G., Ely, J. F., & Ingham, H. (1989). Thermophysical Properties of Methane. Journal of Physical and Chemical Reference Data, 18(2), 583-638. doi:10.1063/1.555828 es_ES
dc.description.references Gerakines, P. A., Whittet, D. C. B., Ehrenfreund, P., Boogert, A. C. A., Tielens, A. G. G. M., Schutte, W. A., … de Graauw, T. (1999). Observations of Solid Carbon Dioxide in Molecular Clouds with theInfrared Space Observatory. The Astrophysical Journal, 522(1), 357-377. doi:10.1086/307611 es_ES
dc.description.references Goodwin, R. D. (1985). Carbon Monoxide Thermophysical Properties from 68 to 1000 K at Pressures to 100 MPa. Journal of Physical and Chemical Reference Data, 14(4), 849-932. doi:10.1063/1.555742 es_ES
dc.description.references GRUNDY, W., YOUNG, L., SPENCER, J., JOHNSON, R., YOUNG, E., & BUIE, M. (2006). Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations. Icarus, 184(2), 543-555. doi:10.1016/j.icarus.2006.04.016 es_ES
dc.description.references Grundy, W. M., Young, L. A., Stansberry, J. A., Buie, M. W., Olkin, C. B., & Young, E. F. (2010). Near-infrared spectral monitoring of Triton with IRTF/SpeX II: Spatial distribution and evolution of ices. Icarus, 205(2), 594-604. doi:10.1016/j.icarus.2009.08.005 es_ES
dc.description.references Gürtler, J., Klaas, U., Henning, T., Ábrahám, P., Lemke, D., Schreyer, K., & Lehmann, K. (2002). Detection of solid ammonia, methanol, and methane with ISOPHOT. Astronomy & Astrophysics, 390(3), 1075-1087. doi:10.1051/0004-6361:20020772 es_ES
dc.description.references Haberle, R. M., Mattingly, B., & Titus, T. N. (2004). Reconciling different observations of the CO2ice mass loading of the Martian north polar cap. Geophysical Research Letters, 31(5), n/a-n/a. doi:10.1029/2004gl019445 es_ES
dc.description.references Hansen, G. B., & McCord, T. B. (2008). Widespread CO2and other non-ice compounds on the anti-Jovian and trailing sides of Europa from Galileo/NIMS observations. Geophysical Research Letters, 35(1). doi:10.1029/2007gl031748 es_ES
dc.description.references Jacobsen, R. T., Stewart, R. B., & Jahangiri, M. (1986). Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa. Journal of Physical and Chemical Reference Data, 15(2), 735-909. doi:10.1063/1.555754 es_ES
dc.description.references Jones, A. H. (1960). Sublimation Pressure Data for Organic Compounds. Journal of Chemical & Engineering Data, 5(2), 196-200. doi:10.1021/je60006a019 es_ES
dc.description.references Kargel, J. S. (1991). Brine volcanism and the interior structures of asteroids and icy satellites. Icarus, 94(2), 368-390. doi:10.1016/0019-1035(91)90235-l es_ES
dc.description.references Lacy, J. H., Carr, J. S., Evans, N. J., II, Baas, F., Achtermann, J. M., & Arens, J. F. (1991). Discovery of interstellar methane - Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds. The Astrophysical Journal, 376, 556. doi:10.1086/170304 es_ES
dc.description.references Langmuir, I. (1916). The Evaporation, Condensation and Reflection of Molecules and the Mechanism of Adsorption. Physical Review, 8(2), 149-176. doi:10.1103/physrev.8.149 es_ES
dc.description.references Lellouch, E., de Bergh, C., Sicardy, B., Ferron, S., & Käufl, H.-U. (2010). Detection of CO in Triton’s atmosphere and the nature of surface-atmosphere interactions. Astronomy and Astrophysics, 512, L8. doi:10.1051/0004-6361/201014339 es_ES
dc.description.references Lellouch, E., de Bergh, C., Sicardy, B., Käufl, H. U., & Smette, A. (2011). High resolution spectroscopy of Pluto’s atmosphere: detection of the 2.3 μm CH4bands and evidence for carbon monoxide. Astronomy & Astrophysics, 530, L4. doi:10.1051/0004-6361/201116954 es_ES
dc.description.references Licandro, J., Grundy, W. M., Pinilla-Alonso, N., & Leisy, P. (2006). Visible spectroscopy of 2003 UB313: evidence for N2 ice on the surface of the largest TNO? Astronomy & Astrophysics, 458(1), L5-L8. doi:10.1051/0004-6361:20066028 es_ES
dc.description.references Loeffler, M. J., & Baragiola, R. A. (2010). Photolysis of solid NH3 and NH3–H2O mixtures at 193 nm. The Journal of Chemical Physics, 133(21), 214506. doi:10.1063/1.3506577 es_ES
dc.description.references Lu, C., & Lewis, O. (1972). Investigation of film‐thickness determination by oscillating quartz resonators with large mass load. Journal of Applied Physics, 43(11), 4385-4390. doi:10.1063/1.1660931 es_ES
dc.description.references Luna, R., Millán, C., Domingo, M., Santonja, C., & Satorre, M. (2012). Upgraded sublimation energy determination procedure for icy films. Vacuum, 86(12), 1969-1973. doi:10.1016/j.vacuum.2012.05.010 es_ES
dc.description.references McCord, T. B. (1997). Organics and Other Molecules in the Surfaces of Callisto and Ganymede. Science, 278(5336), 271-275. doi:10.1126/science.278.5336.271 es_ES
dc.description.references McCord, T. B., Hansen, G. B., Clark, R. N., Martin, P. D., Hibbitts, C. A., Fanale, F. P., … Danielson, G. E. (1998). Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation. Journal of Geophysical Research: Planets, 103(E4), 8603-8626. doi:10.1029/98je00788 es_ES
dc.description.references Moore, M. H., Ferrante, R. F., Hudson, R. L., & Stone, J. N. (2007). Ammonia–water ice laboratory studies relevant to outer Solar System surfaces. Icarus, 190(1), 260-273. doi:10.1016/j.icarus.2007.02.020 es_ES
dc.description.references Mumma, M. J. (2005). Parent Volatiles in Comet 9P/Tempel 1: Before and After Impact. Science, 310(5746), 270-274. doi:10.1126/science.1119337 es_ES
dc.description.references Muñoz Caro, G. M., Jiménez-Escobar, A., Martín-Gago, J. Á., Rogero, C., Atienza, C., Puertas, S., … Torres-Redondo, J. (2010). New results on thermal and photodesorption of CO ice using the novel InterStellar Astrochemistry Chamber (ISAC). Astronomy & Astrophysics, 522, A108. doi:10.1051/0004-6361/200912462 es_ES
dc.description.references Owen, T. C., Roush, T. L., Cruikshank, D. P., Elliot, J. L., Young, L. A., de Bergh, C., … Bartholomew, M. J. (1993). Surface Ices and the Atmospheric Composition of Pluto. Science, 261(5122), 745-748. doi:10.1126/science.261.5122.745 es_ES
dc.description.references Pilling, S., Seperuelo Duarte, E., da Silveira, E. F., Balanzat, E., Rothard, H., Domaracka, A., & Boduch, P. (2010). Radiolysis of ammonia-containing ices by energetic, heavy, and highly charged ions inside dense astrophysical environments. Astronomy and Astrophysics, 509, A87. doi:10.1051/0004-6361/200912274 es_ES
dc.description.references Quirico, E., Douté, S., Schmitt, B., de Bergh, C., Cruikshank, D. P., Owen, T. C., … Roush, T. L. (1999). Composition, Physical State, and Distribution of Ices at the Surface of Triton. Icarus, 139(2), 159-178. doi:10.1006/icar.1999.6111 es_ES
dc.description.references Roberts, J. F., Rawlings, J. M. C., Viti, S., & Williams, D. A. (2007). Desorption from interstellar ices. Monthly Notices of the Royal Astronomical Society, 382(2), 733-742. doi:10.1111/j.1365-2966.2007.12402.x es_ES
dc.description.references Sandford, S. A., & Allamandola, L. J. (1988). The condensation and vaporization behavior of H2O: CO ices and implications for interstellar grains and cometary activity. Icarus, 76(2), 201-224. doi:10.1016/0019-1035(88)90069-3 es_ES
dc.description.references Sandford, S. A., & Allamandola, L. J. (1990). The volume- and surface-binding energies of ice systems containing CO, CO2 and H2O. Icarus, 87(1), 188-192. doi:10.1016/0019-1035(90)90028-8 es_ES
dc.description.references Sandford, S. A., & Allamandola, L. J. (1990). The physical and infrared spectral properties of CO2 in astrophysical ice analogs. The Astrophysical Journal, 355, 357. doi:10.1086/168770 es_ES
dc.description.references Sandford, S. A., & Allamandola, L. J. (1993). Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry. The Astrophysical Journal, 417, 815. doi:10.1086/173362 es_ES
dc.description.references Sandford, S. A., Bernstein, M. P., Allamandola, L. J., Goorvitch, D., & Teixeira, T. C. V. S. (2001). The Abundances of Solid N2and Gaseous CO2in Interstellar Dense Molecular Clouds. The Astrophysical Journal, 548(2), 836-851. doi:10.1086/319023 es_ES
dc.description.references Satorre, M. Á., Domingo, M., Millán, C., Luna, R., Vilaplana, R., & Santonja, C. (2008). Density of , and ices at different temperatures of deposition. Planetary and Space Science, 56(13), 1748-1752. doi:10.1016/j.pss.2008.07.015 es_ES
dc.description.references Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937 es_ES
dc.description.references Seperuelo Duarte, E., Domaracka, A., Boduch, P., Rothard, H., Dartois, E., & da Silveira, E. F. (2010). Laboratory simulation of heavy-ion cosmic-ray interaction with condensed CO. Astronomy and Astrophysics, 512, A71. doi:10.1051/0004-6361/200912899 es_ES
dc.description.references Span, R., & Wagner, W. (1996). A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25(6), 1509-1596. doi:10.1063/1.555991 es_ES
dc.description.references Stephenson, R. M., & Malanowski, S. 1987, Handbook of the Thermodynamics of Organic compounds (New York: Elsevier) es_ES
dc.description.references Stull, D. R. (1947). Vapor Pressure of Pure Substances. Organic and Inorganic Compounds. Industrial & Engineering Chemistry, 39(4), 517-540. doi:10.1021/ie50448a022 es_ES
dc.description.references van Broekhuizen, F. A. 2005, Thesis, The University of Leiden, The Netherlands es_ES
dc.description.references Viti, S., Collings, M. P., Dever, J. W., McCoustra, M. R. S., & Williams, D. A. (2004). Evaporation of ices near massive stars: models based on laboratory temperature programmed desorption data. Monthly Notices of the Royal Astronomical Society, 354(4), 1141-1145. doi:10.1111/j.1365-2966.2004.08273.x es_ES
dc.description.references Whittet, D. C. B., & Duley, W. W. (1991). Carbon monoxide frosts in the interstellar medium. The Astronomy and Astrophysics Review, 2(3-4), 167-189. doi:10.1007/bf00872766 es_ES
dc.description.references Xiang, H. W. (2004). Vapor Pressures, Critical Parameters, Boiling Points, and Triple Points of Ammonia and Trideuteroammonia. Journal of Physical and Chemical Reference Data, 33(4), 1005-1011. doi:10.1063/1.1691451 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem