Mostrar el registro sencillo del ítem
dc.contributor.author | Peinado Pinilla, Jesús | es_ES |
dc.contributor.author | Alonso-Jordá, Pedro | es_ES |
dc.contributor.author | Ibáñez González, Jacinto Javier | es_ES |
dc.contributor.author | Hernández García, Vicente | es_ES |
dc.contributor.author | DO CARMO BORATTO, MURILO | es_ES |
dc.date.accessioned | 2015-04-24T08:10:28Z | |
dc.date.available | 2015-04-24T08:10:28Z | |
dc.date.issued | 2014-11 | |
dc.identifier.issn | 0920-8542 | |
dc.identifier.uri | http://hdl.handle.net/10251/49225 | |
dc.description.abstract | Differential matrix Riccati equations (DMREs) enable to model many physical systems appearing in different branches of science, in some cases, involving very large problem sizes. In this paper, we propose an adaptive algorithm for time-invariant DMREs that uses a piecewise-linearized approach based on the Padé approximation of the matrix exponential. The algorithm designed is based upon intensive use of matrix products and linear system solutions so we can seize the large computational capability that modern graphics processing units (GPUs) have on these types of operations using CUBLAS and CULATOOLS libraries (general purpose GPU), which are efficient implementations of BLAS and LAPACK libraries, respectively, for NVIDIA © GPUs. A thorough analysis showed that some parts of the algorithm proposed can be carried out in parallel, thus allowing to leverage the two GPUs available in many current compute nodes. Besides, our algorithm can be used by any interested researcher through a friendly MATLAB © interface. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Supercomputing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Differential matrix Riccati equation (DMRE) | es_ES |
dc.subject | Ordinary differential equation (ODE) | es_ES |
dc.subject | Piecewise-linearized method | es_ES |
dc.subject | Padé approximants | es_ES |
dc.subject | GPGPU | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Solving time-invariant differential matrix Riccati equations using GPGPU computing | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11227-014-1111-3 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Peinado Pinilla, J.; Alonso-Jordá, P.; Ibáñez González, JJ.; Hernández García, V.; Do Carmo Boratto, M. (2014). Solving time-invariant differential matrix Riccati equations using GPGPU computing. Journal of Supercomputing. 70(2):623-636. doi:10.1007/s11227-014-1111-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://link.springer.com/article/10.1007%2Fs11227-014-1111-3 | es_ES |
dc.description.upvformatpinicio | 623 | es_ES |
dc.description.upvformatpfin | 636 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 70 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 269384 | |
dc.description.references | Anderson E et al (1994) LAPACK users’ guide. SIAM, Philadelphia | es_ES |
dc.description.references | Arias E, Hernández V, Ibáñez J, Peinado J (2007) A fixed point-based BDF method for solving Riccati equations. Appl Math Comput 188(2):1319–1333 | es_ES |
dc.description.references | Benner P, Mena H (2004) BDF methods for large-scale differential Riccati equations. In: 16th International symposium on mathematical theory of network and systems (MTNS2004), Katholieke Universiteit Leuven, Belgium | es_ES |
dc.description.references | Benner P, Mena H (2013) Rosenbrock methods for solving Riccati differential equations. IEEE Trans Autom Control 58(11):2950–2956 | es_ES |
dc.description.references | Chandrasekhar H (1976) Generalized Chandrasekhar algorithms: time-varying models. IEEE Trans Autom Control 21:728–732 | es_ES |
dc.description.references | Chen B, Company R, Jdar L, Rosell MD (2007) Constructing accurate polynomial approximations for nonlinear differential initial value problems. Appl Math Comput 193:523–534 | es_ES |
dc.description.references | Choi CH (1988) Efficient algorithms for solving stiff matrix-valued Riccati differential equations. PhD thesis, University of California, California | es_ES |
dc.description.references | Choi CH (1992) Time-varying Riccati differential equations with known analytic solutions. IEEE Trans Autom Control 37:642–645 | es_ES |
dc.description.references | Davison EJ, Maki MC (1973) The numerical solution of the matrix Riccati differential equation. IEEE Trans Autom Control 18(1):71–73 | es_ES |
dc.description.references | Defez E, Hervs A, Soler L, Tung MM (2007) Numerical solutions of matrix differential models using cubic matrix splines II. Math Comput Model 46:657–669 | es_ES |
dc.description.references | Dieci L (1992) Numerical integration of the differential Riccati equation and some related issues. SIAM J Numer Anal 29(3):781–815 | es_ES |
dc.description.references | EM Photonics (2011) CULATOOLS, R12 edn | es_ES |
dc.description.references | Hernández V, Ibáñez J, Arias E, Peinado J (2008) A GMRES-based BDF method for solving differential Riccati equations. Appl. Math. Comput. 196(2):613–626 | es_ES |
dc.description.references | Horn RA, Johnson CR (1991) Topics in matrix analysis. Cambridge University Press, London | es_ES |
dc.description.references | Ibáñez J, Hernández V (2010) Solving differential matrix Riccati equations by a piecewise-linearized method based on the conmutant equation. Comput Phys Commun 180:2103–2114 | es_ES |
dc.description.references | Ibáñez J, Hernández V (2011) Solving differential matrix Riccati equations by a piecewise-linearized method based on diagonal Padé approximants. Comput Phys Commun 182:669–678 | es_ES |
dc.description.references | Ibáñez J, Hernández V, Arias E, Ruiz P (2009) Solving initial value problems for ordinary differential equations by two approaches: BDF and piecewise-linearized methods. Comput Phys Commun 180(5):712–723 | es_ES |
dc.description.references | Kenney CS, Leipnik RB (1985) Numerical integration of the differential matrix Riccati equation. IEEE Trans Autom Control 30:962–970 | es_ES |
dc.description.references | Li R-C (2000) Unconventional reflexive numerical methods for matrix differential Riccati. In: Technical report 2000-36, Department of Mathematics, University of Kentucky, Lexington | es_ES |
dc.description.references | MathWorks (2013) MATLAB MEX files. http://www.mathworks.es/es/help/matlab/create-mex-files.html . Accessed June 2013 | es_ES |
dc.description.references | MathWorks (2013) MATLAB parallel computing toolbox. http://www.mathworks.es/products/parallel-computing . Accessed June 2013 | es_ES |
dc.description.references | Meyer GH (1973) Initial value methods for boundary value problems. Academic Press, New York | es_ES |
dc.description.references | NVIDIA Corporation (2013) CUBLAS library. http://docs.nvidia.com/cuda/cublas/ . Accessed June 2013 | es_ES |
dc.description.references | NVIDIA Corporation (2013) CUDA C programming guide. http://docs.nvidia.com/cuda/cuda-c-programming-guide . Accessed June 2013 | es_ES |
dc.description.references | Ramos JI, García CM (1997) Piecewise-linearized methods for initial-value problems. Appl Math Comput 82:273–302 | es_ES |
dc.description.references | Rand DW, Winternitz P (1984) Nonlinear superposition principles: a new numerical method for solving matrix Riccati equations. Comput Phys Commun 33:305–328 | es_ES |
dc.description.references | Sanz-Serna JM (1992) Symplectic integrators for Hamiltonian problems: an overview. Acta Numer 1:243–286 | es_ES |
dc.description.references | Sastre J, Ibez J, Defez E, Ruiz P (2011) Accurate matrix exponential computation to solve coupled differential models in engineering. Math Comput Model 54:1835–1840 | es_ES |
dc.description.references | Sorine M, Winternitz P (1985) Superposition laws for the solution of differential Riccati equations. IEEE Trans Autom Control 30:266–272 | es_ES |
dc.description.references | Vaughan DR (1969) A negative exponential solution for the matrix Riccati equation. IEEE Trans Autom Control 14(1):72–75 | es_ES |