- -

A holographic map of action onto entropy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A holographic map of action onto entropy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Acosta, D. es_ES
dc.contributor.author Fernández de Córdoba Castellá, Pedro José es_ES
dc.contributor.author Isidro San Juan, José María es_ES
dc.contributor.author González-Santander Martínez, Juan Luis es_ES
dc.date.accessioned 2015-04-28T16:07:09Z
dc.date.available 2015-04-28T16:07:09Z
dc.date.issued 2012
dc.identifier.issn 1742-6588
dc.identifier.uri http://hdl.handle.net/10251/49405
dc.description.abstract We propose a holographic correspondence between the action integral I describing the mechanics of a finite number of degrees of freedom in the bulk, and the entropy S of the boundary (a holographic screen) enclosing that same volume. The action integral must be measured in units of (i times) Planck's constant, while the entropy must be measured in units of Boltzmann's constant. In this way we are led to an intriguing relation between the second law of thermodynamics and the uncertainty principle of quantum mechanics. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing: Conference Series es_ES
dc.relation.ispartof Journal of Physics: Conference Series es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Action integrals es_ES
dc.subject Boltzmann's constant es_ES
dc.subject Finite number es_ES
dc.subject Holographic screens es_ES
dc.subject Planck's constants es_ES
dc.subject Second Law of Thermodynamics es_ES
dc.subject Uncertainty principles es_ES
dc.subject Degrees of freedom (mechanics) es_ES
dc.subject Holography es_ES
dc.subject Quantum theory es_ES
dc.subject Thermodynamics es_ES
dc.subject Entropy es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A holographic map of action onto entropy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1742-6596/361/1/012027
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Acosta, D.; Fernández De Córdoba Castellá, PJ.; Isidro San Juan, JM.; González-Santander Martínez, JL. (2012). A holographic map of action onto entropy. Journal of Physics: Conference Series. 361:120271-120279. doi:10.1088/1742-6596/361/1/012027 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/1742-6596/361/1/012027 es_ES
dc.description.upvformatpinicio 120271 es_ES
dc.description.upvformatpfin 120279 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 361 es_ES
dc.relation.senia 232089
dc.description.references Adler, S. L. (2004). Quantum Theory as an Emergent Phenomenon. doi:10.1017/cbo9780511535277 es_ES
dc.description.references Banerjee, R., & Majhi, B. R. (2010). Statistical origin of gravity. Physical Review D, 81(12). doi:10.1103/physrevd.81.124006 es_ES
dc.description.references BANERJEE, R. (2010). FROM BLACK HOLES TO EMERGENT GRAVITY. International Journal of Modern Physics D, 19(14), 2365-2369. doi:10.1142/s0218271810018475 es_ES
dc.description.references Blasone, M., Jizba, P., & Vitiello, G. (2001). Dissipation and quantization. Physics Letters A, 287(3-4), 205-210. doi:10.1016/s0375-9601(01)00474-1 es_ES
dc.description.references Blasone, M., Jizba, P., & Vitiello, G. (2003). Dissipation, Emergent Quantization, and Quantum Fluctuations. Lecture Notes in Physics, 151-163. doi:10.1007/978-3-540-40968-7_12 es_ES
dc.description.references Carroll, R. (2010). On The Emergence Theme Of Physics. doi:10.1142/9789814291804 es_ES
dc.description.references ELZE, H.-T. (2009). THE ATTRACTOR AND THE QUANTUM STATES. International Journal of Quantum Information, 07(supp01), 83-96. doi:10.1142/s0219749909004700 es_ES
dc.description.references Grössing, G. (2009). On the thermodynamic origin of the quantum potential. Physica A: Statistical Mechanics and its Applications, 388(6), 811-823. doi:10.1016/j.physa.2008.11.033 es_ES
dc.description.references Grössing, G., Mesa Pascasio, J., & Schwabl, H. (2011). A Classical Explanation of Quantization. Foundations of Physics, 41(9), 1437-1453. doi:10.1007/s10701-011-9556-1 es_ES
dc.description.references Grössing, G. (2010). Sub-Quantum Thermodynamics as a Basis of Emergent Quantum Mechanics. Entropy, 12(9), 1975-2044. doi:10.3390/e12091975 es_ES
dc.description.references Grössing, G., Fussy, S., Mesa Pascasio, J., & Schwabl, H. (2012). An explanation of interference effects in the double slit experiment: Classical trajectories plus ballistic diffusion caused by zero-point fluctuations. Annals of Physics, 327(2), 421-437. doi:10.1016/j.aop.2011.11.010 es_ES
dc.description.references Khrennikov, A. (2010). An analogue of the Heisenberg uncertainty relation in prequantum classical field theory. Physica Scripta, 81(6), 065001. doi:10.1088/0031-8949/81/06/065001 es_ES
dc.description.references Olah, N. (2011). Einsteins trojanisches Pferd. doi:10.1007/978-3-7091-0806-2 es_ES
dc.description.references Padmanabhan, T. (2011). Lessons from classical gravity about the quantum structure of spacetime. Journal of Physics: Conference Series, 306, 012001. doi:10.1088/1742-6596/306/1/012001 es_ES
dc.description.references Sakellariadou, M., Stabile, A., & Vitiello, G. (2011). Noncommutative spectral geometry, algebra doubling, and the seeds of quantization. Physical Review D, 84(4). doi:10.1103/physrevd.84.045026 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem