Mostrar el registro sencillo del ítem
dc.contributor.author | García Mollá, Víctor Manuel | es_ES |
dc.contributor.author | Vidal Maciá, Antonio Manuel | es_ES |
dc.contributor.author | González Salvador, Alberto | es_ES |
dc.contributor.author | Roger Varea, Sandra | es_ES |
dc.date.accessioned | 2015-04-29T08:09:51Z | |
dc.date.available | 2015-04-29T08:09:51Z | |
dc.date.issued | 2014-05 | |
dc.identifier.issn | 0165-1684 | |
dc.identifier.uri | http://hdl.handle.net/10251/49446 | |
dc.description | this is the author’s version of a work that was accepted for publication in Signal Processing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Signal Processing, [VOL 98, may 14] DOI 10.1016/j.sigpro.2013.11.041 | es_ES |
dc.description.abstract | Sphere Decoding is a popular Maximum Likelihood algorithm that can be used to detect signals coming from multiple-input, multiple-output digital communication systems. It is well known that the complexity required to detect each signal with the Sphere Decoding algorithm may become unacceptable, especially for low signal-to-noise ratios. In this paper, we describe an auxiliary technique that drastically decreases the computation required to decode a signal. This technique was proposed by Stojnic, Hassibi and Vikalo in 2008, and is based on using continuous box-bounded minimization in combination with Sphere Decoding. Their implementation is, however, not competitive due to the box minimization algorithm selected. In this paper we prove that by judiciously selecting the box minimization algorithm and tailoring it to the Sphere Decoding environment, the computational complexity of the resulting algorithm for low signal-to-noise ratios is better (by orders of magnitude) than standard Sphere Decoding implementations. & 2013 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | This work has been partially funded by Universitat Politecnica de Valencia through Programa de Apoyo a la Investigacion y Desarrollo de la UPV (PAID-06-11) and (PAID-05-12), by Generalitat Valenciana through projects PROMETEO/2009/013 and Ayudas para la realizacion de proyectos de I+D para grupos de investigacion emergentes GV/2012/039, and by Ministerio Espanol de Economia y Competitividad through project TEC2012-38142-C04. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Signal Processing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | MIMO communication systems | es_ES |
dc.subject | Sphere decoding | es_ES |
dc.subject | Box minimization | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Improved Maximum Likelihood Detection through Sphere Decoding combined with Box Optimization | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.sigpro.2013.11.041 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-05-12/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-11/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F013/ES/Computacion de altas prestaciones sobre arquitecturas actuales en porblemas de procesado múltiple de señal/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2012-38142-C04-01/ES/PROCESADO DISTRIBUIDO Y COLABORATIVO DE SEÑALES SONORAS: CONTROL ACTIVO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//GV%2F2012%2F039/ES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | García Mollá, VM.; Vidal Maciá, AM.; González Salvador, A.; Roger Varea, S. (2014). Improved Maximum Likelihood Detection through Sphere Decoding combined with Box Optimization. Signal Processing. 98:284-294. https://doi.org/10.1016/j.sigpro.2013.11.041 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.sigpro.2013.11.041 | es_ES |
dc.description.upvformatpinicio | 284 | es_ES |
dc.description.upvformatpfin | 294 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 98 | es_ES |
dc.relation.senia | 259479 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |