- -

A system dynamics model for the supply chain procurement transport problem: comparing spreadsheets, fuzzy programming and simulation approaches

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A system dynamics model for the supply chain procurement transport problem: comparing spreadsheets, fuzzy programming and simulation approaches

Mostrar el registro completo del ítem

Mula, J.; Campuzano Bolarín, F.; Díaz-Madroñero Boluda, FM.; Carpio, KM. (2013). A system dynamics model for the supply chain procurement transport problem: comparing spreadsheets, fuzzy programming and simulation approaches. International Journal of Production Research. 51(13):4087-4104. https://doi.org/10.1080/00207543.2013.774487

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/49679

Ficheros en el ítem

Metadatos del ítem

Título: A system dynamics model for the supply chain procurement transport problem: comparing spreadsheets, fuzzy programming and simulation approaches
Autor: Mula, Josefa Campuzano Bolarín, Francisco Díaz-Madroñero Boluda, Francisco Manuel Carpio, Katerine M.
Entidad UPV: Universitat Politècnica de València. Centro de Investigación de Gestión e Ingeniería de la Producción - Centre d'Investigació de Gestió i Enginyeria de la Producció
Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses
Fecha difusión:
Resumen:
This article proposes a simulation approach based on system dynamics for operational procurement and transport planning in a two-level, multi-product and multi-period supply chain. This work uses the Vensim((R)) simulation ...[+]
Palabras clave: Simulation , System dynamics , Supply chain dynamics , Procurement , Transport , Operations planning
Derechos de uso: Cerrado
Fuente:
International Journal of Production Research. (issn: 0020-7543 ) (eissn: 1366-588X )
DOI: 10.1080/00207543.2013.774487
Editorial:
Taylor & Francis: STM, Behavioural Science and Public Health Titles
Versión del editor: http://dx.doi.org/10.1080/00207543.2013.774487
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2010-19977/ES/TECNOLOGIA DE PRODUCCION BASADA EN LA REALIMENTACION DE DECISIONES DE PLANIFICACION DE PRODUCCION, TRANSPORTE Y DESCARGAS Y EL REDISEÑO DE ALMACENES EN CADENA DE SUMINISTRO/
Agradecimientos:
This work has been funded by the Spanish Ministry of Science and Technology project: Production technology based on the feedback from production, transport and unload planning and the redesign of warehouses decisions in ...[+]
Tipo: Artículo

References

Archibald, G., N. Karabakal, and P. Karlsson. 1999. Supply Chain vs. Supply Chain: Using Simulation to Compete beyond the Four Walls.Proceedings of the 31st conference on Winter Simulation: Simulation – A Bridge to the Future - Volume 2. New York, USA: ACM, 1207–1214.

Barnabè, F. (2011). A «system dynamics‐based Balanced Scorecard» to support strategic decision making. International Journal of Productivity and Performance Management, 60(5), 446-473. doi:10.1108/17410401111140383

Baumol, W. J., & Vinod, H. D. (1970). An Inventory Theoretic Model of Freight Transport Demand. Management Science, 16(7), 413-421. doi:10.1287/mnsc.16.7.413 [+]
Archibald, G., N. Karabakal, and P. Karlsson. 1999. Supply Chain vs. Supply Chain: Using Simulation to Compete beyond the Four Walls.Proceedings of the 31st conference on Winter Simulation: Simulation – A Bridge to the Future - Volume 2. New York, USA: ACM, 1207–1214.

Barnabè, F. (2011). A «system dynamics‐based Balanced Scorecard» to support strategic decision making. International Journal of Productivity and Performance Management, 60(5), 446-473. doi:10.1108/17410401111140383

Baumol, W. J., & Vinod, H. D. (1970). An Inventory Theoretic Model of Freight Transport Demand. Management Science, 16(7), 413-421. doi:10.1287/mnsc.16.7.413

Beamon, B. M. (1998). Supply chain design and analysis: International Journal of Production Economics, 55(3), 281-294. doi:10.1016/s0925-5273(98)00079-6

Biswas, S., & Narahari, Y. (2004). Object oriented modeling and decision support for supply chains. European Journal of Operational Research, 153(3), 704-726. doi:10.1016/s0377-2217(02)00806-8

Bose, S., & Pekny, J. F. (2000). A model predictive framework for planning and scheduling problems: a case study of consumer goods supply chain. Computers & Chemical Engineering, 24(2-7), 329-335. doi:10.1016/s0098-1354(00)00469-5

Bottani, E., & Montanari, R. (2009). Supply chain design and cost analysis through simulation. International Journal of Production Research, 48(10), 2859-2886. doi:10.1080/00207540902960299

Byrne, M. ., & Bakir, M. . (1999). Production planning using a hybrid simulation – analytical approach. International Journal of Production Economics, 59(1-3), 305-311. doi:10.1016/s0925-5273(98)00104-2

Byrne, M. D., & Hossain, M. M. (2005). Production planning: An improved hybrid approach. International Journal of Production Economics, 93-94, 225-229. doi:10.1016/j.ijpe.2004.06.021

Cachon, G. P. (1999). Managing Supply Chain Demand Variability with Scheduled Ordering Policies. Management Science, 45(6), 843-856. doi:10.1287/mnsc.45.6.843

Campuzano, F., & Mula, J. (2011). Supply Chain Simulation. doi:10.1007/978-0-85729-719-8

Campuzano, F., Mula, J., & Peidro, D. (2010). Fuzzy estimations and system dynamics for improving supply chains. Fuzzy Sets and Systems, 161(11), 1530-1542. doi:10.1016/j.fss.2009.12.002

Chandra, P., & Fisher, M. L. (1994). Coordination of production and distribution planning. European Journal of Operational Research, 72(3), 503-517. doi:10.1016/0377-2217(94)90419-7

Chatfield, D. C. (2013). Underestimating the bullwhip effect: a simulation study of the decomposability assumption. International Journal of Production Research, 51(1), 230-244. doi:10.1080/00207543.2012.660576

Choi, K., Narasimhan, R., & Kim, S. W. (2012). Postponement strategy for international transfer of products in a global supply chain: A system dynamics examination. Journal of Operations Management, 30(3), 167-179. doi:10.1016/j.jom.2012.01.003

Cid Yáñez, F., Frayret, J.-M., Léger, F., & Rousseau, A. (2009). Agent-based simulation and analysis of demand-driven production strategies in the timber industry. International Journal of Production Research, 47(22), 6295-6319. doi:10.1080/00207540802158283

Erengüç, Ş. S., Simpson, N. C., & Vakharia, A. J. (1999). Integrated production/distribution planning in supply chains: An invited review. European Journal of Operational Research, 115(2), 219-236. doi:10.1016/s0377-2217(98)90299-5

Ferreira, L., & Borenstein, D. (2011). Normative agent-based simulation for supply chain planning. Journal of the Operational Research Society, 62(3), 501-514. doi:10.1057/jors.2010.144

Gen, M., & Syarif, A. (2005). Hybrid genetic algorithm for multi-time period production/distribution planning. Computers & Industrial Engineering, 48(4), 799-809. doi:10.1016/j.cie.2004.12.012

Giannoccaro, I. and P. Pontrandolfo. 2001.Models for supply chain management: A taxonomy. In: Proceedings of the Production and Operations Management. Pom-2001 Conference: Pom Mastery in the New Millennium, 30 March to April 2, Orlando, Florida, 2001.

Gnoni, M. G., Iavagnilio, R., Mossa, G., Mummolo, G., & Di Leva, A. (2003). Production planning of a multi-site manufacturing system by hybrid modelling: A case study from the automotive industry. International Journal of Production Economics, 85(2), 251-262. doi:10.1016/s0925-5273(03)00113-0

Helo, P. T. (2000). Dynamic modelling of surge effect and capacity limitation in supply chains. International Journal of Production Research, 38(17), 4521-4533. doi:10.1080/00207540050205271

Hernández, J. E., Mula, J., Ferriols, F. J., & Poler, R. (2008). A conceptual model for the production and transport planning process: An application to the automobile sector. Computers in Industry, 59(8), 842-852. doi:10.1016/j.compind.2008.06.004

Jahangirian, M., Eldabi, T., Naseer, A., Stergioulas, L. K., & Young, T. (2010). Simulation in manufacturing and business: A review. European Journal of Operational Research, 203(1), 1-13. doi:10.1016/j.ejor.2009.06.004

June-Young Bang, & Yeong-Dae Kim. (2010). Hierarchical Production Planning for Semiconductor Wafer Fabrication Based on Linear Programming and Discrete-Event Simulation. IEEE Transactions on Automation Science and Engineering, 7(2), 326-336. doi:10.1109/tase.2009.2021462

Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G. V., & Eversdyk, D. (2004). A simulation based optimization approach to supply chain management under demand uncertainty. Computers & Chemical Engineering, 28(10), 2087-2106. doi:10.1016/j.compchemeng.2004.06.006

Katsaliaki, K., Mustafee, N., Taylor, S. J. E., & Brailsford, S. (2009). Comparing conventional and distributed approaches to simulation in a complex supply-chain health system. Journal of the Operational Research Society, 60(1), 43-51. doi:10.1057/palgrave.jors.2602531

Khaji, M. R., & Shafaei, R. (2011). A system dynamics approach for strategic partnering in supply networks. International Journal of Computer Integrated Manufacturing, 24(2), 106-125. doi:10.1080/0951192x.2010.531288

Kim, B., & Kim, S. (2001). Extended model for a hybrid production planning approach. International Journal of Production Economics, 73(2), 165-173. doi:10.1016/s0925-5273(00)00172-9

Klug, F. (2013). The internal bullwhip effect in car manufacturing. International Journal of Production Research, 51(1), 303-322. doi:10.1080/00207543.2012.677551

Lai, Y.-J., & Hwang, C.-L. (1992). A new approach to some possibilistic linear programming problems. Fuzzy Sets and Systems, 49(2), 121-133. doi:10.1016/0165-0114(92)90318-x

Lee, Y. H., & Kim, S. H. (2002). Production–distribution planning in supply chain considering capacity constraints. Computers & Industrial Engineering, 43(1-2), 169-190. doi:10.1016/s0360-8352(02)00063-3

Lee, Y. H., Kim, S. H., & Moon, C. (2002). Production-distribution planning in supply chain using a hybrid approach. Production Planning & Control, 13(1), 35-46. doi:10.1080/09537280110061566

Liang, T.-F. (2006). Distribution planning decisions using interactive fuzzy multi-objective linear programming. Fuzzy Sets and Systems, 157(10), 1303-1316. doi:10.1016/j.fss.2006.01.014

Lim, S. J., Jeong, S. J., Kim, K. S., & Park, M. W. (2005). A simulation approach for production-distribution planning with consideration given to replenishment policies. The International Journal of Advanced Manufacturing Technology, 27(5-6), 593-603. doi:10.1007/s00170-004-2208-2

Lim, S. J., Jeong, S. J., Kim, K. S., & Park, M. W. (2005). Hybrid approach to distribution planning reflecting a stochastic supply chain. The International Journal of Advanced Manufacturing Technology, 28(5-6), 618-625. doi:10.1007/s00170-004-2398-7

(s. f.). doi:10.1021/ie960901

Mikati, N. (2009). Dependence of lead time on batch size studied by a system dynamics model. International Journal of Production Research, 48(18), 5523-5532. doi:10.1080/00207540903164628

Min, H., & Zhou, G. (2002). Supply chain modeling: past, present and future. Computers & Industrial Engineering, 43(1-2), 231-249. doi:10.1016/s0360-8352(02)00066-9

Minegishi, S., & Thiel, D. (2000). System dynamics modeling and simulation of a particular food supply chain. Simulation Practice and Theory, 8(5), 321-339. doi:10.1016/s0928-4869(00)00026-4

Othman, S. N. and N. H. Mustaffa. 2012. Supply Chain Simulation and Optimization Methods: An Overview. InProceedings of Third International Conference on Intelligent Systems, Modelling and Simulation(ISMS), Sabah, Malaysia, 161 –167.

Padhi, S. S., S. M. Wagner, T. T. Niranjan, and V. Aggarwal. 2012. A Simulation-Based Methodology to Analyse Production Line Disruptions.International Journal of Production Research51 (6): 1885–1897.

Peidro, D., M. Díaz-Madroñero, and J. Mula. 2009. Operational Transport Planning in an Automobile Supply Chain: An Interactive Fuzzy Multi-Objective Approach.Proceedings of the 8th WSEAS International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics. Stevens Point, Wisconsin, USA: World Scientific and Engineering Academy and Society (WSEAS), 121–127.

Petrovic, D., Roy, R., & Petrovic, R. (1998). Modelling and simulation of a supply chain in an uncertain environment. European Journal of Operational Research, 109(2), 299-309. doi:10.1016/s0377-2217(98)00058-7

Qu, W. W., Bookbinder, J. H., & Iyogun, P. (1999). An integrated inventory–transportation system with modified periodic policy for multiple products. European Journal of Operational Research, 115(2), 254-269. doi:10.1016/s0377-2217(98)00301-4

Sabri, E. H., & Beamon, B. M. (2000). A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 28(5), 581-598. doi:10.1016/s0305-0483(99)00080-8

Safaei, A. S., Moattar Husseini, S. M., Z.-Farahani, R., Jolai, F., & Ghodsypour, S. H. (2009). Integrated multi-site production-distribution planning in supply chain by hybrid modelling. International Journal of Production Research, 48(14), 4043-4069. doi:10.1080/00207540902791777

Santa-Eulalia, L. A., D’Amours, S., & Frayret, J.-M. (2012). Agent-based simulations for advanced supply chain planning and scheduling: The FAMASS methodological framework for requirements analysis. International Journal of Computer Integrated Manufacturing, 25(10), 963-980. doi:10.1080/0951192x.2011.652177

Sharda, B., & Akiya, N. (2012). Selecting make-to-stock and postponement policies for different products in a chemical plant: A case study using discrete event simulation. International Journal of Production Economics, 136(1), 161-171. doi:10.1016/j.ijpe.2011.10.001

Tako, A. A., & Robinson, S. (2010). Model development in discrete-event simulation and system dynamics: An empirical study of expert modellers. European Journal of Operational Research, 207(2), 784-794. doi:10.1016/j.ejor.2010.05.011

Thürer, M., Silva, C., & Stevenson, M. (2010). Optimising workload norms: the influence of shop floor characteristics on setting workload norms for the workload control concept. International Journal of Production Research, 49(4), 1151-1171. doi:10.1080/00207541003604836

Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214. doi:10.1016/j.fss.2007.08.010

Van der Vorst, J. G. A. ., Beulens, A. J. ., & van Beek, P. (2000). Modelling and simulating multi-echelon food systems. European Journal of Operational Research, 122(2), 354-366. doi:10.1016/s0377-2217(99)00238-6

Le Hoa Vo, T., & Thiel, D. (2011). Economic simulation of a poultry supply chain facing a sanitary crisis. British Food Journal, 113(8), 1011-1030. doi:10.1108/00070701111153760

Volling, T., & Spengler, T. S. (2011). Modeling and simulation of order-driven planning policies in build-to-order automobile production. International Journal of Production Economics, 131(1), 183-193. doi:10.1016/j.ijpe.2011.01.008

Wang, R.-C., & Liang, T.-F. (2005). Applying possibilistic linear programming to aggregate production planning. International Journal of Production Economics, 98(3), 328-341. doi:10.1016/j.ijpe.2004.09.011

Wangphanich, P., Kara, S., & Kayis, B. (2009). Analysis of the bullwhip effect in multi-product, multi-stage supply chain systems–a simulation approach. International Journal of Production Research, 48(15), 4501-4517. doi:10.1080/00207540902950852

Williams, J. F. (1981). Heuristic Techniques for Simultaneous Scheduling of Production and Distribution in Multi-Echelon Structures: Theory and Empirical Comparisons. Management Science, 27(3), 336-352. doi:10.1287/mnsc.27.3.336

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem