- -

Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition

Mostrar el registro completo del ítem

Reyes Tolosa, MD.; Damonte, LC.; Brine, H.; Bolink, HJ.; Hernández Fenollosa, MDLÁ. (2013). Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition. Nanoscale Research Letters. 8:135-144. https://doi.org/10.1186/1556-276X-8-135

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/49829

Ficheros en el ítem

Metadatos del ítem

Título: Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition
Autor: Reyes Tolosa, María Dolores Damonte, Laura Cristina Brine, Hicham Bolink, Henk J. Hernández Fenollosa, María de los Ángeles
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ...[+]
Palabras clave: Spin coating , Electrodeposition , ZnO films , DC magnetron sputtering
Derechos de uso: Reserva de todos los derechos
Fuente:
Nanoscale Research Letters. (issn: 1931-7573 )
DOI: 10.1186/1556-276X-8-135
Editorial:
SpringerOpen
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F074/ES/Nanotecnología y Nanomateriales para la Conversión Solar Fotovoltaica/
Agradecimientos:
We thank Prof. A. Segura of the Universitat de Valencia for the facilities with the sputtering equipment. This work was supported by the project PROMETEO/2009/074 from the Generalitat Valenciana.
Tipo: Artículo

References

Franklin JB, Zou B, Petrov P, McComb DW, Ryanand MP, McLachlan MA,J: Optimised pulsed laser deposition of ZnO thin films on transparent conducting substrates. Mater Chem 2011, 21: 8178–8182. 10.1039/c1jm10658a

Jaroslav B, Andrej V, Marie N, Šuttab P, Miroslav M, František U: Cryogenic pulsed laser deposition of ZnO. Vacuum 2012, 86(6):684–688. 10.1016/j.vacuum.2011.07.033

Jae Bin L, Hyeong Joon K, Soo Gil K, Cheol Seong H, Seong-Hyeon H, Young Hwa S, Neung Hun L: Deposition of ZnO thin films by magnetron sputtering for a film bulk acoustic resonator. Thin Solid Films 2003, 435: 179–185. 10.1016/S0040-6090(03)00347-X [+]
Franklin JB, Zou B, Petrov P, McComb DW, Ryanand MP, McLachlan MA,J: Optimised pulsed laser deposition of ZnO thin films on transparent conducting substrates. Mater Chem 2011, 21: 8178–8182. 10.1039/c1jm10658a

Jaroslav B, Andrej V, Marie N, Šuttab P, Miroslav M, František U: Cryogenic pulsed laser deposition of ZnO. Vacuum 2012, 86(6):684–688. 10.1016/j.vacuum.2011.07.033

Jae Bin L, Hyeong Joon K, Soo Gil K, Cheol Seong H, Seong-Hyeon H, Young Hwa S, Neung Hun L: Deposition of ZnO thin films by magnetron sputtering for a film bulk acoustic resonator. Thin Solid Films 2003, 435: 179–185. 10.1016/S0040-6090(03)00347-X

Xionga DP, Tanga XG, Zhaoa WR, Liua QX, Wanga YH, Zhoub SL: Deposition of ZnO and MgZnO films by magnetron sputtering. Vacuum 2013, 89: 254–256.

Reyes Tolosa MD, Orozco-Messana J, Lima ANC, Camaratta R, Pascual M, Hernandez-Fenollosa MA: Electrochemical deposition mechanism for ZnO nanorods: diffusion coefficient and growth models. J Electrochem Soc 2011, 158(11):E107-E110.

Ming F, Ji Z: Mechanism of the electrodeposition of ZnO nanosheets below room temperature. J Electrochem Soc 2010, 157(8):D450-D453. 10.1149/1.3447738

Pullini D, Pruna A, Zanin S, Busquets Mataix D: High-efficiency electrodeposition of large scale ZnO nanorod arrays for thin transparent electrodes. J Electrochem Soc 2012, 159: E45-E51. 10.1149/2.093202jes

Pruna A, Pullini D, Busquets Mataix D: Influence of deposition potential on structure of ZnO nanowires synthesized in track-etched membranes. J Electrochem Soc 2012, 159: E92-E98. 10.1149/2.003205jes

Marotti RE, Giorgi P, Machado G, Dalchiele EA: Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Solar Energy Materials and Solar Cells 2009, 90(15):2356–2361.

Yeong Hwan K, Myung Sub K, Jae Su Y: Structural and optical properties of ZnO nanorods by electrochemical growth using multi-walled carbon nanotube-composed seed layers. Nanoscale Res Lett 2012, 7: 13. 10.1186/1556-276X-7-13

Elias J, Tena-Zaera R, Lévy-Clément C: Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic applications: role of buffer layer. Thin Solid Films 2007, 515(24):8553–8557. 10.1016/j.tsf.2007.04.027

Zhai Y, Zhai S, Chen G, Zhang K, Yue Q, Wang L, Liu J, Jia J: Effects of morphology of nanostructured ZnO on direct electrochemistry and biosensing properties of glucose oxidase. J Electroanal Chem 2011, 656: 198–205. 10.1016/j.jelechem.2010.11.020

Reyes Tolosa MD, Orozco-Messana J, Damonte LC, Hernandez-Fenollosa MA: ZnO nanoestructured layers processing with morphology control by pulsed electrodeposition. J Electrochem Soc 2011, 158(7):D452-D455. 10.1149/1.3593004

Gouxa A, Pauporté T, Chivot J, Lincot D: Temperature effects on ZnO electrodeposition. Electrochim Acta 2005, 50(11):2239–2248. 10.1016/j.electacta.2004.10.007

Kwok WM, Djurisic , Aleksandra B, Leung , Yu H, Li D, Tam KH, Phillips DL, Chan WK: Influence of annealing on stimulated emission in ZnO nanorods. Appl Phys Lett 2006, 89(18):183112. 183112–3 183112–3 10.1063/1.2378560

Donderis V, Hernández-Fenollosa MA, Damonte LC, Marí B, Cembrero J: Enhancement of surface morphology and optical properties of nanocolumnar ZnO films. Superlattices and Microstructures 2007, 42: 461–467. 10.1016/j.spmi.2007.04.068

Ghayour H, Rezaie HR, Mirdamadi S, Nourbakhsh AA: The effect of seed layer thickness on alignment and morphology of ZnO nanorods. Vacuum 2011, 86: 101–105. 10.1016/j.vacuum.2011.04.025

Michael B, Mohammad Bagher R, Sayyed-Hossein K, Wojtek W, Kourosh K-z: Aqueous synthesis of interconnected ZnO nanowires using spray pyrolysis deposited seed layers. Mater Lett 2010, 64: 291–294. 10.1016/j.matlet.2009.10.065

Jang Bo S, Hyuk C, Sung-O K: Rapid hydrothermal synthesis of zinc oxide nanowires by annealing methods on seed layers. J Nanomater 2011, 2011: 6.

Peiro AM, Punniamoorthy R, Kuveshni G, Boyle DS, Paul O’B, Donal DC, Bradley , Jenny N, Durrant JR: Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. J Mater Chem 2006, 16(21):2088–2096. 10.1039/b602084d

Vallet-Regí M, Salinas AJ, Arcos D: From the bioactive glasses to the star gels. J Mater Sci Mater Med 2006, 17: 1011–1017.

Peulon S, Lincot D: Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions. J Electrochem Soc 1998, 145: 864. 10.1149/1.1838359

Dalchiele EA, Giorgi P, Marotti RE, Martín F, Ramos-Barrado JR, Ayouci R, Leinen D: Electrodeposition of ZnO thin films on n-Si(100). Sol. Energy Mater. Sol. Cells 2001, 70: 245. 10.1016/S0927-0248(01)00065-4

Courtney IA, Dahn JR: Electrochemical and in situ X‐ray diffraction studies of the reaction of lithium with tin oxide composites. J Electrochem Soc 1997, 144(6):2045–2052. 10.1149/1.1837740

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem