Mostrar el registro sencillo del ítem
dc.contributor.advisor | López Sardá, Mª Leticia | es_ES |
dc.contributor.advisor | Torrent Bravo, José Andrés | es_ES |
dc.contributor.author | Canales Mengod, Pedro | es_ES |
dc.date.accessioned | 2015-05-07T07:40:55Z | |
dc.date.available | 2015-05-07T07:40:55Z | |
dc.date.created | 2015-04-20 | es_ES |
dc.date.issued | 2015-05-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/49830 | |
dc.description.abstract | [EN] The Albufera of Valencia and its Devesa, form a single unit with both an ecological and social high value; reason that led them to be declared Natural Park in 1986 by the Generalitat Valenciana; being the first park declared in this autonomous community. The Devesa is the spit that separates the Mediterranean Sea from the Albufera lake, and is considered a natural area with high scientific, cultural, scenic and educational values. And although during the 60s underwent a process of urbanization, today is in the throes of regeneration to an era of ecological climax. This regeneration has been possible because of the economics efforts made by various administrations for their conservation and protection. However, these efforts do not prevent Devesa from suffering systematically wildfires that undermine their ability to regenerate and that not only produce significant ecological and economic damage, but when fires reach great dimensions, threaten the life of the people who live there and also the firefighting services This Thesis focuses on the study and optimization of the detection system of wildfires using infrared installed in the Devesa. For doing this, the wildfires produced during ten years and the alarms generated during five years of operation of the system are analyzed, relating these alarms with the weather conditions; in order to reduce false positives; on the other hand a fire risk classification system based on neural networks is developed, using as descriptions parameters those used in the IFW, that is the official system used for the official organization in charge of fire weather index in Spain: AEMET. After the development of the neural network to classify the risk of fire, and analyzed the infrared camera system, both are combined to establish a classification system of the alarms, in order to reduce false positives, and establish a criterion of risk to the user of the fire detection system. | en_EN |
dc.description.abstract | [ES] La Albufera de Valencia y su Devesa, forman un conjunto único con un elevado valor tanto ecológico como social; motivo que les llevó a ser declarados Parque Natural en 1986 por parte de la Generalitat Valenciana; siendo el primer parque declarado en esta comunidad. La Devesa es el cordón litoral que separa el Mar Mediterráneo del lago de la Albufera, y es considerada un área natural con altos valores científicos, culturales, paisajísticos y educativos. Y, pese a que durante la década de los 60 sufrió un proceso de urbanización, en la actualidad se encuentra en plena fase de regeneración hacia una época de clímax ecológico. Esta regeneración ha sido posible gracias a los esfuerzos, tanto administrativos como económicos, que han realizado diferentes administraciones para su conservación y protección. Sin embargo, estos esfuerzos no impiden que sistemáticamente el monte de la Devesa sufra incendios forestales que merman su capacidad de regeneración y que, no solo producen un daño ecológico y económico importante, sino que aquellos que alcanzan grandes dimensiones ponen en riesgo la vida de las personas que allí residen, y de los equipos de extinción que tratan de sofocarlos. La presente Tesis se centra en el estudio y optimización del sistema de detección de incendios forestales mediante infrarrojos instalado en la Devesa. Para ello se analizan los incendios ocurridos durante más de diez años, y las alarmas generadas durante cinco años de funcionamiento del sistema, relacionando estas alarmas con las condiciones meteorológicas, a fin de disminuir los falsos positivos; a su vez se desarrolla un sistema de clasificación de riesgo de incendio a partir de redes neuronales, basado en los parámetros meteorológicos descriptores usados en el IFW, índice oficial establecido por la AEMET para clasificar el riesgo de incendio. Una vez desarrollada la red neuronal para clasificar el riesgo de incendio, y analizado el sistema de cámaras infrarrojas, se combinan ambos a fin de establecer un sistema de clasificación de las alarmas capaz de disminuir los falsos positivos, y de establecer un criterio de riesgo al usuario del sistema de detección de incendios. | es_ES |
dc.description.abstract | [CA] L'Albufera de València i la seva Devesa, formen un conjunt únic amb un elevat valor tant ecològic com social; motiu que els va portar a ser declarats Parc Natural al 1986 per part de la Generalitat Valenciana; sent el primer parc declarat en aquesta Comunidad. La Devesa és el cordó litoral que separa el mar Mediterrani del llac de l'Albufera, i és considerada una àrea natural amb alts valors científics, culturals, paisatgístics i educatius. I tot i que durant la dècada dels 60 va patir un procés d'urbanització, en l'actualitat es troba en plena fase de regeneració cap a una època de clímax ecològic. Aquesta regeneració ha estat possible gràcies als esforços tant administratius, com econòmics, que han realitzat diferents administracions per a la seva conservació i protecció. No obstant això, aquests esforços no impedeixen que sistemàticament la muntanya de la Devesa pateixi incendis forestals que minven la seva capacitat de regeneració i que, no només produeixen un dany ecològic i econòmic important, sinó que aquells que arriben a tindre grans dimensions, posen en risc la vida de les persones que hi viuen, i dels equips d'extinció que tracten de sufocar-los. Aquesta tesi se centra en l'estudi i optimització del sistema de detecció d'incendis forestals mitjançant infrarojos instal · lat a la Devesa. Per a això s'analitzen els incendis ocorreguts durant més de deu anys i les alarmes generades durant cinc anys de funcionament del sistema, relacionant aquestes alarmes amb les condicions meteorològiques; per tal de disminuir els falsos positius; al seu torn es desenvolupa un sistema de classificació de risc d'incendi a partir de xarxes neuronals, basat en els paràmetres meteorològics descriptors usats en el IFW, índex oficial establert per l'AEMET per classificar el risc d'incendi. Un cop desenvolupada la xarxa neuronal per classificar el risc d'incendi, i analitzat el sistema de càmeres infraroges, es combinen tots dos a fi d'establir un sistema de classificació de les alarmes capaç de disminuir els falsos positius, i d'establir un criteri de risc a l¿usuari del sistema de detecció d'incendis.  | ca_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Incendio Forestal | es_ES |
dc.subject | Sistema Detección Incendio | es_ES |
dc.subject | Termografía Infrarroja | es_ES |
dc.subject | Interfaz Urbano Forestal | es_ES |
dc.subject | Redes Neuronales | es_ES |
dc.subject | ANN | es_ES |
dc.subject | Índice de Riesgo | es_ES |
dc.subject | Clasificación Alarmas | es_ES |
dc.subject | Devesa Albufera | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Termografía Infrarroja aplicada a la detección de incendios en la interfaz urbano-forestal y su optimización mediante redes neuronales artificiales | es_ES |
dc.type | Tesis doctoral | es_ES |
dc.identifier.doi | 10.4995/Thesis/10251/49830 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Canales Mengod, P. (2015). Termografía Infrarroja aplicada a la detección de incendios en la interfaz urbano-forestal y su optimización mediante redes neuronales artificiales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/49830 | es_ES |
dc.description.accrualMethod | TESIS | es_ES |
dc.type.version | info:eu-repo/semantics/acceptedVersion | es_ES |
dc.relation.pasarela | TESIS\8084 | es_ES |