- -

Upper-bound modelization of an ironed three-layered polymer-coated steel strip

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Upper-bound modelization of an ironed three-layered polymer-coated steel strip

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sellés Cantó, Miguel Ángel es_ES
dc.contributor.author Schmid, S.R. es_ES
dc.contributor.author Sanchez-Caballero, Samuel es_ES
dc.contributor.author Pérez Bernabeu, Elena es_ES
dc.contributor.author Reig Pérez, Miguel Jorge
dc.date.accessioned 2015-05-14T09:03:18Z
dc.date.available 2015-05-14T09:03:18Z
dc.date.issued 2012
dc.identifier.issn 0268-3768
dc.identifier.uri http://hdl.handle.net/10251/50235
dc.description.abstract [EN] Global beverage can and food container consumption is very high, with billions of cans produced annually worldwide. There are several steps in can manufacturing, but ironing is the most crucial. In a previous work (Sellés et al., J Mater Process Technol 202:7-14, 2008), a series of ironing experiments were reported using a new material and an ironing simulator. This material was a three-layered polymer-coated steel, and it was seen that under some process conditions, it survived the ironing process with no damage in any of the three layers. The critical die angle was determined as well as specimen quality surface tests. In this paper, an associated theoretical ironing model is described, using the upper-bound theorem and considering the cases of successful ironing or shaving. It is possible to give insight into how to design a material that irons well. For example, the optimal layer thicknesses are also found. es_ES
dc.description.sponsorship The authors wish to thank Mittal Steel for financial support and for providing all required materials. Authors also thank the support of Universitat Politècnica de València [grant number PAID-06-10-003-305].
dc.language Español es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof International Journal of Advanced Manufacturing Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Can forming es_ES
dc.subject Ironing es_ES
dc.subject Polymer-coated steel es_ES
dc.subject Sheet metal forming es_ES
dc.subject Upper-bound method es_ES
dc.subject Die angle es_ES
dc.subject Food containers es_ES
dc.subject Global beverage es_ES
dc.subject Ironing process es_ES
dc.subject Modelization es_ES
dc.subject Process condition es_ES
dc.subject Steel strip es_ES
dc.subject Surface test es_ES
dc.subject Three-layer es_ES
dc.subject Upper-bound methods es_ES
dc.subject Industrial engineering es_ES
dc.subject Sheet metal es_ES
dc.subject Technology es_ES
dc.subject Polymers es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Upper-bound modelization of an ironed three-layered polymer-coated steel strip es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00170-011-3584-z
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-10-003-305/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Sellés Cantó, MÁ.; Schmid, S.; Sanchez-Caballero, S.; Pérez Bernabeu, E.; Reig Pérez, MJ. (2012). Upper-bound modelization of an ironed three-layered polymer-coated steel strip. International Journal of Advanced Manufacturing Technology. 60:161-171. https://doi.org/10.1007/s00170-011-3584-z es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 161 es_ES
dc.description.upvformatpfin 171 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 60 es_ES
dc.relation.senia 222254
dc.contributor.funder Universitat Politècnica de València
dc.description.references Sellés MA, Schmid SR, Seguí VJ (2008) Ironability of a three-layered polymer coated steel. Part 1: experimental investigation. J Mater Process Technol 202:7–14 es_ES
dc.description.references Jaworski JA, Schmid SR (1999) Survivability of laminated polymer lubricant films in ironing. Tribol Trans 1:32–38 es_ES
dc.description.references Jaworski JA, Schmid SR, Wang JE (1999) An experimental investigation of the survivability and friction characteristics of tin-coated and polymer-laminated steels. J Manuf Sci Eng 121:232–237 es_ES
dc.description.references Campion D (1980) Deep drawing and ironing—theory and practise. Sheet Met Ind 57:111–119 es_ES
dc.description.references Chang D-F (1998) An analytical model of the ironing process including redundant work effect. J Mater Process Technol 75:253–258 es_ES
dc.description.references Huang YM, Lu YH, Chan JW (1991) An elasto-plastic finite element and experimental study of the ironing process. J Mater Process Technol 26:53–80 es_ES
dc.description.references Teodosiu C, Daniel D, Cao HL, Duval JL (1995) Modelling and simulation of the can-making process using solid finite elements. J Mater Process Technol 50:133–143 es_ES
dc.description.references Zhan ZR, Wang CW (1995) Numerical simulations for extrusion and ironing and die-angle optimization. J Mater Process Technol 55:48–52 es_ES
dc.description.references Van den Bosch MJ, Schreurs PJG, Geersa MGD (2009) On the prediction of delamination during deep-drawing of polymer coated metal sheet. J Mater Process Technol 209:297–302 es_ES
dc.description.references Schünemann M, Ahmetoglu M, Altan T (1996) Prediction of process conditions in drawing and ironing of cans. J Mater Process Technol 59:1–9 es_ES
dc.description.references Van der Aa MAH, Schreurs PJG, Baaijens FPT (1998) Modelling of the wall ironing process of polymer coated sheet metal. In: Proceedings of fourth world congress on computational mechanics es_ES
dc.description.references Nilsson A, Legge D (1999) Process development of aluminium ironing using finite element analysis. Model Simulat Mater Sci Eng 7:1005–1011 es_ES
dc.description.references Kampus Z, Nardin B (2002) Improving workability in ironing. J Mater Process Technol 130–131:64–68 es_ES
dc.description.references Wang Z, Dohda K, Jeong Y (2001) FEM simulation of surface smoothing in the ironing process. J Mater Process Technol 113:705–709 es_ES
dc.description.references Deneuville P, Lecot R (1994) The study of friction in ironing process by physical and numerical modelling. J Mater Process Technol 45:625–630 es_ES
dc.description.references Kim H-K, Hong SK (2007) FEM-based optimum design of multi-stage deep drawing process of molybdenum sheet. J Mater Process Technol 184:354–362 es_ES
dc.description.references Adamovic D, Mandic V, Jurkovic Z, Grizelj B, Stefanovic M, Marinkovic T, Aleksandrovic S (2010) An experimental modelling and numerical FE analysis of steel-strip ironing process. Teh Vjesn 17:435–444 es_ES
dc.description.references Kotani Y, Watanabe A, Nishiumura K, Watari H (2010) Numerical simulation and evaluation of local thickness increment in ironing by finite element method. Adv Mat Res 97–100:404–407 es_ES
dc.description.references Hosford W, Caddell R (2007) Metal forming: mechanics and metallurgy, 3rd edn. Cambridge University Press, Cambridge es_ES
dc.description.references Hosford WF (2008) Mechanical behavior of materials, vol 1. Cambridge University Press, Cambridge es_ES
dc.description.references Rowe GW (1972) Conformado de los metales, 1st edn. Ediciones Urmo, Bilbao es_ES
dc.description.references Kalpakjian S (1997) Manufacturing processes for engineering materials, 3rd edn. Wesley, Menlo Park es_ES
dc.description.references Tresca H (1878) On further application of the flow of solids. Proc Inst Mech Eng 30:301 es_ES
dc.description.references Press WH, Teukolsky S, Vetterling W, Flannery BP (2002) Numerical recipes in C+ +, vol 2. Cambridge University Press, Cambridge es_ES
dc.description.references Challen JM, Mclean LJ, Oxley LB (1884) Plastic deformation of a metal surface in sliding contact with a hard wedge: its relation to friction and wear. Proc R Soc Lond 394(1806):161–181 es_ES
dc.description.references Wilson WRD, Halliday K (1977) An inlet zone analysis for the lubrication of a drawing process by a rigid-plastic solid. Wear 42:135–148 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem