Mostrar el registro sencillo del ítem
dc.contributor.author | Sellés Cantó, Miguel Ángel | es_ES |
dc.contributor.author | Schmid, S.R. | es_ES |
dc.contributor.author | Sanchez-Caballero, Samuel | es_ES |
dc.contributor.author | Pérez Bernabeu, Elena | es_ES |
dc.contributor.author | Reig Pérez, Miguel Jorge | |
dc.date.accessioned | 2015-05-14T09:03:18Z | |
dc.date.available | 2015-05-14T09:03:18Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0268-3768 | |
dc.identifier.uri | http://hdl.handle.net/10251/50235 | |
dc.description.abstract | [EN] Global beverage can and food container consumption is very high, with billions of cans produced annually worldwide. There are several steps in can manufacturing, but ironing is the most crucial. In a previous work (Sellés et al., J Mater Process Technol 202:7-14, 2008), a series of ironing experiments were reported using a new material and an ironing simulator. This material was a three-layered polymer-coated steel, and it was seen that under some process conditions, it survived the ironing process with no damage in any of the three layers. The critical die angle was determined as well as specimen quality surface tests. In this paper, an associated theoretical ironing model is described, using the upper-bound theorem and considering the cases of successful ironing or shaving. It is possible to give insight into how to design a material that irons well. For example, the optimal layer thicknesses are also found. | es_ES |
dc.description.sponsorship | The authors wish to thank Mittal Steel for financial support and for providing all required materials. Authors also thank the support of Universitat Politècnica de València [grant number PAID-06-10-003-305]. | |
dc.language | Español | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | International Journal of Advanced Manufacturing Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Can forming | es_ES |
dc.subject | Ironing | es_ES |
dc.subject | Polymer-coated steel | es_ES |
dc.subject | Sheet metal forming | es_ES |
dc.subject | Upper-bound method | es_ES |
dc.subject | Die angle | es_ES |
dc.subject | Food containers | es_ES |
dc.subject | Global beverage | es_ES |
dc.subject | Ironing process | es_ES |
dc.subject | Modelization | es_ES |
dc.subject | Process condition | es_ES |
dc.subject | Steel strip | es_ES |
dc.subject | Surface test | es_ES |
dc.subject | Three-layer | es_ES |
dc.subject | Upper-bound methods | es_ES |
dc.subject | Industrial engineering | es_ES |
dc.subject | Sheet metal | es_ES |
dc.subject | Technology | es_ES |
dc.subject | Polymers | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Upper-bound modelization of an ironed three-layered polymer-coated steel strip | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00170-011-3584-z | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-10-003-305/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Sellés Cantó, MÁ.; Schmid, S.; Sanchez-Caballero, S.; Pérez Bernabeu, E.; Reig Pérez, MJ. (2012). Upper-bound modelization of an ironed three-layered polymer-coated steel strip. International Journal of Advanced Manufacturing Technology. 60:161-171. https://doi.org/10.1007/s00170-011-3584-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.description.upvformatpinicio | 161 | es_ES |
dc.description.upvformatpfin | 171 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 60 | es_ES |
dc.relation.senia | 222254 | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.description.references | Sellés MA, Schmid SR, Seguí VJ (2008) Ironability of a three-layered polymer coated steel. Part 1: experimental investigation. J Mater Process Technol 202:7–14 | es_ES |
dc.description.references | Jaworski JA, Schmid SR (1999) Survivability of laminated polymer lubricant films in ironing. Tribol Trans 1:32–38 | es_ES |
dc.description.references | Jaworski JA, Schmid SR, Wang JE (1999) An experimental investigation of the survivability and friction characteristics of tin-coated and polymer-laminated steels. J Manuf Sci Eng 121:232–237 | es_ES |
dc.description.references | Campion D (1980) Deep drawing and ironing—theory and practise. Sheet Met Ind 57:111–119 | es_ES |
dc.description.references | Chang D-F (1998) An analytical model of the ironing process including redundant work effect. J Mater Process Technol 75:253–258 | es_ES |
dc.description.references | Huang YM, Lu YH, Chan JW (1991) An elasto-plastic finite element and experimental study of the ironing process. J Mater Process Technol 26:53–80 | es_ES |
dc.description.references | Teodosiu C, Daniel D, Cao HL, Duval JL (1995) Modelling and simulation of the can-making process using solid finite elements. J Mater Process Technol 50:133–143 | es_ES |
dc.description.references | Zhan ZR, Wang CW (1995) Numerical simulations for extrusion and ironing and die-angle optimization. J Mater Process Technol 55:48–52 | es_ES |
dc.description.references | Van den Bosch MJ, Schreurs PJG, Geersa MGD (2009) On the prediction of delamination during deep-drawing of polymer coated metal sheet. J Mater Process Technol 209:297–302 | es_ES |
dc.description.references | Schünemann M, Ahmetoglu M, Altan T (1996) Prediction of process conditions in drawing and ironing of cans. J Mater Process Technol 59:1–9 | es_ES |
dc.description.references | Van der Aa MAH, Schreurs PJG, Baaijens FPT (1998) Modelling of the wall ironing process of polymer coated sheet metal. In: Proceedings of fourth world congress on computational mechanics | es_ES |
dc.description.references | Nilsson A, Legge D (1999) Process development of aluminium ironing using finite element analysis. Model Simulat Mater Sci Eng 7:1005–1011 | es_ES |
dc.description.references | Kampus Z, Nardin B (2002) Improving workability in ironing. J Mater Process Technol 130–131:64–68 | es_ES |
dc.description.references | Wang Z, Dohda K, Jeong Y (2001) FEM simulation of surface smoothing in the ironing process. J Mater Process Technol 113:705–709 | es_ES |
dc.description.references | Deneuville P, Lecot R (1994) The study of friction in ironing process by physical and numerical modelling. J Mater Process Technol 45:625–630 | es_ES |
dc.description.references | Kim H-K, Hong SK (2007) FEM-based optimum design of multi-stage deep drawing process of molybdenum sheet. J Mater Process Technol 184:354–362 | es_ES |
dc.description.references | Adamovic D, Mandic V, Jurkovic Z, Grizelj B, Stefanovic M, Marinkovic T, Aleksandrovic S (2010) An experimental modelling and numerical FE analysis of steel-strip ironing process. Teh Vjesn 17:435–444 | es_ES |
dc.description.references | Kotani Y, Watanabe A, Nishiumura K, Watari H (2010) Numerical simulation and evaluation of local thickness increment in ironing by finite element method. Adv Mat Res 97–100:404–407 | es_ES |
dc.description.references | Hosford W, Caddell R (2007) Metal forming: mechanics and metallurgy, 3rd edn. Cambridge University Press, Cambridge | es_ES |
dc.description.references | Hosford WF (2008) Mechanical behavior of materials, vol 1. Cambridge University Press, Cambridge | es_ES |
dc.description.references | Rowe GW (1972) Conformado de los metales, 1st edn. Ediciones Urmo, Bilbao | es_ES |
dc.description.references | Kalpakjian S (1997) Manufacturing processes for engineering materials, 3rd edn. Wesley, Menlo Park | es_ES |
dc.description.references | Tresca H (1878) On further application of the flow of solids. Proc Inst Mech Eng 30:301 | es_ES |
dc.description.references | Press WH, Teukolsky S, Vetterling W, Flannery BP (2002) Numerical recipes in C+ +, vol 2. Cambridge University Press, Cambridge | es_ES |
dc.description.references | Challen JM, Mclean LJ, Oxley LB (1884) Plastic deformation of a metal surface in sliding contact with a hard wedge: its relation to friction and wear. Proc R Soc Lond 394(1806):161–181 | es_ES |
dc.description.references | Wilson WRD, Halliday K (1977) An inlet zone analysis for the lubrication of a drawing process by a rigid-plastic solid. Wear 42:135–148 | es_ES |