Mostrar el registro sencillo del ítem
dc.contributor.author | Torres Górriz, Benjamín | es_ES |
dc.contributor.author | Calderón García, Pedro Antonio | es_ES |
dc.contributor.author | Paya-Zaforteza, Ignacio | es_ES |
dc.contributor.author | Sales Maicas, Salvador | es_ES |
dc.date.accessioned | 2015-05-15T15:27:12Z | |
dc.date.available | 2015-05-15T15:27:12Z | |
dc.date.issued | 2014-10-29 | |
dc.identifier.issn | 0957-0233 | |
dc.identifier.uri | http://hdl.handle.net/10251/50307 | |
dc.description.abstract | This paper presents a new long gauge sensor for structural health monitoring based on the use of Fiber Bragg gratings. The proposed sensor has the advantage over existing sensors that it does not require prestressing of the optical fiber. The development consisted of numerical studies complemented by experimental tests to analyze: (1) the strain transfer between the sensor and the host structure; (2) the in!uence of sensor axial stiffness on the structural behavior of the host structure; (3) the in!uence of the mechanical properties of the adhesive used to fix the sensor and (4) the failure modes of the sensor (buckling and shear stress of sensor anchors). | es_ES |
dc.description.sponsorship | This work was made possible by the support from the Universitat Politecnica de Valencia, the Spanish Ministry for Science and Innovation (Research Project BIA2011-27104) and the Spanish Ministry of Public Works (Project Sopromac P41/08). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Hybrid Open Access | es_ES |
dc.relation.ispartof | Measurement Science and Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fi ber optic sensors | es_ES |
dc.subject | Fiber Bragg gratting | es_ES |
dc.subject | Long-gauge sensors | es_ES |
dc.subject | Strain measurement | es_ES |
dc.subject | Concrete structures | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.subject.classification | PROYECTOS DE INGENIERIA | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Experimental and numerical analysis of a hybrid FBG long gauge sensor for structural health monitoring | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/0957-0233/25/12/125107 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MFOM//TRANSeINFRA2008-0041/ES/Desarrollo Sensores Avanzados Fibra Óptica para Determinación de Propiedades de Materiales y Salud Estructural.-SOPROMAC/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2011-27104/ES/DEFINICION DE CONDICIONES DE MONITORIZACION, ENCAPSULADO Y FIJACION DE SENSORES OPTICOS PARA MEDIR TEMPERATURAS Y DEFORMACIONES EN ESTRUCTURAS SOMETIDAS A ALTAS TEMPERATURAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Torres Górriz, B.; Calderón García, PA.; Paya-Zaforteza, I.; Sales Maicas, S. (2014). Experimental and numerical analysis of a hybrid FBG long gauge sensor for structural health monitoring. Measurement Science and Technology. 25:1-15. https://doi.org/10.1088/0957-0233/25/12/125107 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/0957-0233/25/12/125107 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.relation.senia | 278016 | |
dc.contributor.funder | Ministerio de Fomento | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Glišić, B., & Inaudi, D. (2007). Fibre Optic Methods for Structural Health Monitoring. doi:10.1002/9780470517819 | es_ES |
dc.description.references | Kissinger, T., Charrett, T. O. H., & Tatam, R. P. (2013). Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications. Measurement Science and Technology, 24(9), 094011. doi:10.1088/0957-0233/24/9/094011 | es_ES |
dc.description.references | Abang, A., & Webb, D. J. (2013). Effects of annealing, pre-tension and mounting on the hysteresis of polymer strain sensors. Measurement Science and Technology, 25(1), 015102. doi:10.1088/0957-0233/25/1/015102 | es_ES |
dc.description.references | Calderón, P. A., & Glisic, B. (2012). Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement. Measurement Science and Technology, 23(6), 065604. doi:10.1088/0957-0233/23/6/065604 | es_ES |
dc.description.references | Torres, B., Payá-Zaforteza, I., Calderón, P. A., & Adam, J. M. (2011). Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring. Engineering Structures, 33(2), 539-548. doi:10.1016/j.engstruct.2010.11.012 | es_ES |
dc.description.references | Majumder, M., Gangopadhyay, T. K., Chakraborty, A. K., Dasgupta, K., & Bhattacharya, D. K. (2008). Fibre Bragg gratings in structural health monitoring—Present status and applications. Sensors and Actuators A: Physical, 147(1), 150-164. doi:10.1016/j.sna.2008.04.008 | es_ES |
dc.description.references | Li, D. (2006). Strain transferring analysis of fiber Bragg grating sensors. Optical Engineering, 45(2), 024402. doi:10.1117/1.2173659 | es_ES |
dc.description.references | Moyo, P., Brownjohn, J. M. W., Suresh, R., & Tjin, S. C. (2005). Development of fiber Bragg grating sensors for monitoring civil infrastructure. Engineering Structures, 27(12), 1828-1834. doi:10.1016/j.engstruct.2005.04.023 | es_ES |
dc.description.references | Leng, J. S., Winter, D., Barnes, R. A., Mays, G. C., & Fernando, G. F. (2006). Structural health monitoring of concrete cylinders using protected fibre optic sensors. Smart Materials and Structures, 15(2), 302-308. doi:10.1088/0964-1726/15/2/009 | es_ES |
dc.description.references | Kesavan, K., Ravisankar, K., Parivallal, S., Sreeshylam, P., & Sridhar, S. (2010). Experimental studies on fiber optic sensors embedded in concrete. Measurement, 43(2), 157-163. doi:10.1016/j.measurement.2009.08.010 | es_ES |
dc.description.references | Hill, K. O., & Meltz, G. (1997). Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 15(8), 1263-1276. doi:10.1109/50.618320 | es_ES |
dc.description.references | Chung, W., & Kang, D. (2008). Full-scale test of a concrete box girder using FBG sensing system. Engineering Structures, 30(3), 643-652. doi:10.1016/j.engstruct.2007.05.003 | es_ES |
dc.description.references | Adam, J. M., Brencich, A., Hughes, T. G., & Jefferson, T. (2010). Micromodelling of eccentrically loaded brickwork: Study of masonry wallettes. Engineering Structures, 32(5), 1244-1251. doi:10.1016/j.engstruct.2009.12.050 | es_ES |