- -

Parallel approach to NNMF on multicore architecture

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Parallel approach to NNMF on multicore architecture

Show full item record

Alonso, P.; García Mollá, VM.; Martínez Zaldívar, FJ.; Salazar Afanador, A.; Vergara Domínguez, L.; Vidal Maciá, AM. (2014). Parallel approach to NNMF on multicore architecture. Journal of Supercomputing. 70(2):564-576. doi:10.1007/s11227-013-1083-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/50365

Files in this item

Item Metadata

Title: Parallel approach to NNMF on multicore architecture
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
We tackle the parallelization of Non-Negative Matrix Factorization (NNMF), using the Alternating Least Squares and Lee and Seung algorithms, motivated by its use in audio source separation. For the first algorithm, a very ...[+]
Subjects: NNMF , Parallel computing , Multicore architectures , Alternating least squares method , Lee and Seung method
Copyrigths: Cerrado
Source:
Journal of Supercomputing. (issn: 0920-8542 )
DOI: 10.1007/s11227-013-1083-8
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s11227-013-1083-8
Description: The final publication is available at Springer via http://dx.doi.org/10.1007/s11227-013-1083-8
Thanks:
This work has been supported by European Union ERDF and Spanish Government through TEC2012-38142-C04 project and Generalitat Valenciana through PROMETEO/2009/013 project.
Type: Artículo

References

Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791

Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. Advances in neural information processing systems, vol 13. MIT Press, Cambridge, pp 556–562

Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126 [+]
Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791

Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. Advances in neural information processing systems, vol 13. MIT Press, Cambridge, pp 556–562

Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemometr Intell. Lab. Syst. 37:23–35

Battenberg E, Freed A, Wessel D (2010) Advances in the parallelization of music and audio applications. International computer music conference. Stony Brook, New York

Wnag J, Zhong W, Zhang J (2006) NNMF-based factorization techniques for high-accuracy privacy protection on non-negative-valued datasets, data mining workshops, 2006. ICDM Workshops 2006. Sixth IEEE International Conference on Computing and Processing, pp 513–517

Rodriguez-Serrano FJ, Carabias-Orti JJ, Vera-Candeas P, Virtanen T, Ruiz-Reyes N (2012) Multiple instrument mixtures source separation evaluation using instrument-dependent NMF models. In: Theis F (ed) LVA/ICA 2012. Springer-Verlag, Berlin, pp 380–387

Xu W, Liu X, Gong Y (2003) Document clustering based on non-negative matrix factorization, Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval. SIGIR03, Toronto, pp 267–273.

Berry MW, Browne M, Langville A, Pauca V, Plemmons R (2007) Algorithms and applications for aproximate nonnegative matrix factorization. Comput Stat Data Anal 52:155–173

Kim J, Park H (2007) Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 23:1495–1502

Devajaran K (2008) Nonnegative matrix factorization: an analytical and interpretative tool in computational biology. PLoS Comput Biol 4(7):e1000029

Guan N, Tao D, Luo Z, Yuan B (2012) NeNMF: an optimal gradient method for nonnegative matrix factorization. IEEE Trans Signal Proc 60(6):2882–2898

Cichocki A, Phan A-H (2009) Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans Fund Electron Commun Comput Sci E92– A:708–721

Cichocki A, Zdunek R, Amari S-I (2007) Hierarchical ALS algorithms for nonnegative matrix and 3d tensor factorization, independent component analysis and signal separation, lecture notes in computer science, vol 4666. Springer, NewYork, pp 169–176

Cichocki A, Cruces S, Amari S-I (2011) Generalized alpha–beta divergences and their application to robust nonnegative matrix factorization. Entropy 13:134–170

Kim J, Park H (2011) Fast nonnegative matrix factorization: an active-set-like method and comparisons. SIAM J Sci Comput 33(6):3261–3281

Kim D, Sra S, Dhillon IS (2007) Fast newton-type methods for the least squares nonnegative matrix approximation problem, Proceedings of the seventh SIAM international conference on data mining. SIAM, Philadelphia, pp 343–354

Kim J, Park H (2008) Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM J Matrix Anal Appl 30:713–730

Carabias-Orti JJ, Virtanen T, Vera-Candeas P, Ruiz-Reyes N, Caadas-Quesada FJ (2011) Musical instrument sound multi-excitation model for non-negative spectrogram factorization. IEEE J Select Top Signal Proc 5(6):1144–1158

Mejia-Roa E, Garcia C, Gomez JI, Prieto M, Tenllado C, Pascual-Montano A, Tirado F (2012) Parallelism on the non-negative matrix factorization, applications, tools and techniques on the road to exascale computing, vol 22. IOS Press, Netherlands

Dong C, Zhoa H, Wang W (2010) Parallel nonnegative matrix factorization algorithm on the distributed memory platform. Int J Par Prog 38:117–137

Grippo L, Sciandrone M (2000) On the convergence of the block nonlinear Gauss–Seidel method under convex constraints. Oper Res Lett 26:127–136

Lawson CL, Hanson RJ (1995) Solving least squares problems. SIAM, Philadelphia

Bjorck A (1996) Numerical methods for least squares problems. SIAM, Philadelphia

MATLAB version 8.0 (R2012b) (2012) The MathWorks Inc, Natick, Massachusetts.

[-]

This item appears in the following Collection(s)

Show full item record