- -

On Yager and Hamacher t-Norms and Fuzzy Metric Spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On Yager and Hamacher t-Norms and Fuzzy Metric Spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castro Company, Francisco es_ES
dc.contributor.author Tirado Peláez, Pedro es_ES
dc.date.accessioned 2015-05-19T18:03:47Z
dc.date.available 2015-05-19T18:03:47Z
dc.date.issued 2014-12
dc.identifier.issn 0884-8173
dc.identifier.uri http://hdl.handle.net/10251/50523
dc.description.abstract Recently, Gregori et al. have discussed (Fuzzy Sets Syst 2011;161:2193 2205) the so-called strong fuzzy metrics when looking for a class of completable fuzzy metric spaces in the sense of George and Veeramani and state the question of finding a non-strong fuzzy metric space for a continuous t-norm different from the minimum. Later on, Gutíerrez-García and Romaguera solved this question (Fuzzy Sets Syst 2011;162:91 93) by means of two examples for the product and the Lukasiewicz t-norm, respectively. In this direction, they posed to find further examples of nonstrong fuzzy metrics for continuous t-norms that are greater than the product but different from minimum. In this paper, we found an example of this kind. On the other hand, Tirado established (Fixed Point Theory 2012;13:273 283) a fixed-point theorem in fuzzy metric spaces, which was successfully used to prove the existence and uniqueness of solution for the recurrence equation associated with the probabilistic divide and conquer algorithms. Here, we generalize this result by using a class of continuous t-norms known as ω-Yager t-norms. es_ES
dc.description.sponsorship The second author acknowledges the support of the Ministry of Economy and Competitiveness of Spain under grant MTM2012-37894-C02-01 and the support of Universitat Politecnica de Valencia under grant PAID-06-12-SP20120471. en_EN
dc.language Inglés es_ES
dc.publisher Wiley: 12 months es_ES
dc.relation.ispartof International Journal of Intelligent Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject T-norm es_ES
dc.subject Yager t-norms es_ES
dc.subject Hamacher t-norms es_ES
dc.subject Fuzzy Metric Spaces es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On Yager and Hamacher t-Norms and Fuzzy Metric Spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/int.21688
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-12-SP20120471/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2012-37894-C02-01/ES/METODOS TOPOLOGICOS EN HIPERESPACIOS Y MULTIFUNCIONES CONTRACTIVAS. CASI-METRICAS Y DOMINIOS CUANTITATIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Castro Company, F.; Tirado Peláez, P. (2014). On Yager and Hamacher t-Norms and Fuzzy Metric Spaces. International Journal of Intelligent Systems. 29:1173-1180. https://doi.org/10.1002/int.21688 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/int.21688 es_ES
dc.description.upvformatpinicio 1173 es_ES
dc.description.upvformatpfin 1180 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.relation.senia 278779
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Sherwood, H. (1966). On the completion of probabilistic metric spaces. Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete, 6(1), 62-64. doi:10.1007/bf00531809 es_ES
dc.description.references Gregori, V. (2002). On completion of fuzzy metric spaces. Fuzzy Sets and Systems, 130(3), 399-404. doi:10.1016/s0165-0114(02)00115-x es_ES
dc.description.references Gregori, V., Morillas, S., & Sapena, A. (2010). On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems, 161(16), 2193-2205. doi:10.1016/j.fss.2010.03.013 es_ES
dc.description.references Gutiérrez García, J., & Romaguera, S. (2011). Examples of non-strong fuzzy metrics. Fuzzy Sets and Systems, 162(1), 91-93. doi:10.1016/j.fss.2010.09.017 es_ES
dc.description.references Yager, R. R. (1980). On a general class of fuzzy connectives. Fuzzy Sets and Systems, 4(3), 235-242. doi:10.1016/0165-0114(80)90013-5 es_ES
dc.description.references Castro-Company, F., & Tirado, P. (2012). Some classes of t-norms and fuzzy metric spaces. doi:10.1063/1.4756272 es_ES
dc.description.references George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7 es_ES
dc.description.references Hadžić, O., & Pap, E. (2001). Fixed Point Theory in Probabilistic Metric Spaces. doi:10.1007/978-94-017-1560-7 es_ES
dc.description.references Klement, E. P., Mesiar, R., & Pap, E. (2000). Triangular Norms. Trends in Logic. doi:10.1007/978-94-015-9540-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem