- -

Interactive handwriting recognition with limited user effort

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Interactive handwriting recognition with limited user effort

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano Martinez Santos, Nicolas es_ES
dc.contributor.author Giménez Pastor, Adrián es_ES
dc.contributor.author Civera Saiz, Jorge es_ES
dc.contributor.author Sanchis Navarro, José Alberto es_ES
dc.contributor.author Juan Císcar, Alfonso es_ES
dc.date.accessioned 2015-05-20T09:46:18Z
dc.date.available 2015-05-20T09:46:18Z
dc.date.issued 2014-03-01
dc.identifier.issn 1433-2833
dc.identifier.uri http://hdl.handle.net/10251/50537
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s10032-013-0204-5 es_ES
dc.description.abstract [EN] Transcription of handwritten text in (old) documents is an important, time-consuming task for digital libraries. Although post-editing automatic recognition of handwritten text is feasible, it is not clearly better than simply ignoring it and transcribing the document from scratch. A more effective approach is to follow an interactive approach in which both the system is guided by the user, and the user is assisted by the system to complete the transcription task as efficiently as possible. Nevertheless, in some applications, the user effort available to transcribe documents is limited and fully supervision of the system output is not realistic. To circumvent these problems, we propose a novel interactive approach which efficiently employs user effort to transcribe a document by improving three different aspects. Firstly, the system employs a limited amount of effort to solely supervise recognised words that are likely to be incorrect. Thus, user effort is efficiently focused on the supervision of words for which the system is not confident enough. Secondly, it refines the initial transcription provided to the user by recomputing it constrained to user supervisions. In this way, incorrect words in unsupervised parts can be automatically amended without user supervision. Finally, it improves the underlying system models by retraining the system from partially supervised transcriptions. In order to prove these statements, empirical results are presented on two real databases showing that the proposed approach can notably reduce user effort in the transcription of handwritten text in (old) documents. es_ES
dc.description.sponsorship The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No 287755 (transLectures). Also supported by the Spanish Government (MICINN, MITyC, "Plan E", under Grants MIPRCV "Consolider Ingenio 2010", MITTRAL (TIN2009-14633-C03-01), erudito.com (TSI-020110-2009-439), iTrans2 (TIN2009-14511), and FPU (AP2007-02867), and the Generalitat Valenciana (Grants Prometeo/2009/014 and GV/2010/067). en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof International Journal on Document Analysis and Recognition es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Handwriting recognition es_ES
dc.subject Computer-assisted text transcription es_ES
dc.subject Active learning es_ES
dc.subject Semi-supervised learning es_ES
dc.subject Confidence measures es_ES
dc.subject Constrained Viterbi search es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Interactive handwriting recognition with limited user effort es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10032-013-0204-5
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-14633-C03-01/ES/Multimodal Interaction For Text Transcription With Adaptive Learning/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/287755/EU/Transcription and Translation of Video Lectures/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MITURCO//TSI-020110-2009-0439/ES/ERUDITO.COM/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F014/ES/Adaptive learning and multimodality in pattern recognition (Almapater)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-14511/ES/Traduccion De Textos Y Transcripcion De Voz Interactivas/
dc.relation.projectID info:eu-repo/grantAgreement/MEC//AP2007-02867/ES/AP2007-02867/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2010%2F067/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Serrano Martinez Santos, N.; Giménez Pastor, A.; Civera Saiz, J.; Sanchis Navarro, JA.; Juan Císcar, A. (2014). Interactive handwriting recognition with limited user effort. International Journal on Document Analysis and Recognition. 17(1):47-59. https://doi.org/10.1007/s10032-013-0204-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007%2Fs10032-013-0204-5 es_ES
dc.description.upvformatpinicio 47 es_ES
dc.description.upvformatpfin 59 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 241907
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Industria, Turismo y Comercio es_ES
dc.description.references Agua, M., Serrano, N., Civera, J., Juan, A.: Character-based handwritten text recognition of multilingual documents. In: Proceedings of Advances in Speech and Language Technologies for Iberian Languages (IBERSPEECH 2012), Madrid (Spain), pp. 187–196 (2012) es_ES
dc.description.references Ahn, L.V., Maurer, B., Mcmillen, C., Abraham, D., Blum, M.: reCAPTCHA: human-based character recognition via web security measures. Science 321, 1465–1468 (2008) es_ES
dc.description.references Barrachina, S., Bender, O., Casacuberta, F., Civera, J., Cubel, E., Khadivi, S., Lagarda, A.L., Ney, H., Tomás, J., Vidal, E.: Statistical approaches to computer-assisted translation. Comput. Linguist. 35(1), 3–28 (2009) es_ES
dc.description.references Bertolami, R., Bunke, H.: Hidden markov model-based ensemble methods for offline handwritten text line recognition. Pattern Recognit. 41, 3452–3460 (2008) es_ES
dc.description.references Bunke, H., Bengio, S., Vinciarelli, A.: Offline recognition of unconstrained handwritten texts using HMMs and statistical language models. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 709–720 (2004) es_ES
dc.description.references Dreuw, P., Jonas, S., Ney, H.: White-space models for offline Arabic handwriting recognition. In: Proceedings of the 19th International Conference on, Pattern Recognition, pp. 1–4 (2008) es_ES
dc.description.references Efron, B., Tibshirani, R.J.: An introduction to bootstrap. Chapman and Hall/CRC, London (1994) es_ES
dc.description.references Fischer, A., Wuthrich, M., Liwicki, M., Frinken, V., Bunke, H., Viehhauser, G., Stolz, M.: Automatic transcription of handwritten medieval documents. In: Proceedings of the 15th International Conference on Virtual Systems and Multimedia, pp. 137–142 (2009) es_ES
dc.description.references Frinken, V., Bunke, H.: Evaluating retraining rules for semi-supervised learning in neural network based cursive word recognition. In: Proceedings of the 10th International Conference on Document Analysis and Recognition, Barcelona (Spain), pp. 31–35 (2009) es_ES
dc.description.references Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 855–868 (2009) es_ES
dc.description.references Hakkani-Tür, D., Riccardi, G., Tur, G.: An active approach to spoken language processing. ACM Trans. Speech Lang. Process. 3, 1–31 (2006) es_ES
dc.description.references Kristjannson, T., Culotta, A., Viola, P., McCallum, A.: Interactive information extraction with constrained conditional random fields. In: Proceedings of the 19th Natural Conference on Artificial Intelligence, San Jose, CA (USA), pp. 412–418 (2004) es_ES
dc.description.references Laurence Likforman-Sulem, A.Z., Taconet, B.: Text line segmentation of historical documents: a survey. Int. J. Doc. Anal. Recognit. 9, 123–138 (2007) es_ES
dc.description.references Le Bourgeois, F., Emptoz, H.: Debora: digital access to books of the renaissance. Int. J. Doc. Anal. Recognit. 9, 193–221 (2007) es_ES
dc.description.references Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966) es_ES
dc.description.references Neal, R.M., Hinton, G.E.: Learning in graphical models. In: A View of the EM Algorithm That Justifies Incremental, Sparse, and Other Variants, Chap. MIT Press, Cambridge, MA, USA, pp. 355–368 (1999) es_ES
dc.description.references Pérez, D., Tarazón, L., Serrano, N., Ramos-Terrades, O., Juan, A.: The GERMANA database. In: Proceedings of the 10th International Conference on Document Analysis and Recognition, Barcelona (Spain), pp. 301–305 (2009) es_ES
dc.description.references Plötz, T., Fink, G.A.: Markov models for offline handwriting recognition: a survey. Int. J. Doc. Anal. Recognit. 12(4), 269–298 (2009) es_ES
dc.description.references Quiniou, S., Cheriet, M., Anquetil, E.: Error handling approach using characterization and correction steps for handwritten document analysis. Int. J. Doc. Anal. Recognit. 15(2), 125–141 (2012) es_ES
dc.description.references Rodríguez, L., García-Varea, I., Vidal, E.: Multi-modal computer assisted speech transcription. In: International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction, ACM, New York, NY, USA, pp. 30:1–30:7 (2010) es_ES
dc.description.references Serrano, N., Pérez, D., Sanchis, A., Juan, A.: Adaptation from partially supervised handwritten text transcriptions. In: Proceedings of the 11th International Conference on Multimodal Interfaces and the 6th Workshop on Machine Learning for Multimodal Interaction, Cambridge, MA (USA), pp. 289–292 (2009) es_ES
dc.description.references Serrano, N., Castro, F., Juan, A.: The RODRIGO database. In: Proceedings of the 7th International Conference on Language Resources and Evaluation, Valleta (Malta), pp. 2709–2712 (2010) es_ES
dc.description.references Serrano, N., Giménez, A., Sanchis, A., Juan, A.: Active learning strategies for handwritten text transcription. In: Proceedings of the 12th International Conference on Multimodal Interfaces and the 7th Workshop on Machine Learning for Multimodal, Interaction, Beijing (China) (2010) es_ES
dc.description.references Serrano, N., Sanchis, A., Juan, A.: Balancing error and supervision effort in interactive-predictive handwriting recognition. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, Hong Kong (China), pp. 373–376 (2010) es_ES
dc.description.references Serrano, N., Tarazón, L., Pérez, D., Ramos-Terrades, O., Juan, A.: The GIDOC prototype. In: Proceedings of the 10th International Workshop on Pattern Recognition in Information Systems, Funchal (Portugal), pp. 82–89 (2010) es_ES
dc.description.references Settles, B.: Active Learning Literature Survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison (2009) es_ES
dc.description.references Tarazón, L., Pérez, D., Serrano, N., Alabau, V., Ramos-Terrades, O., Sanchis, A., Juan, A.: Confidence measures for error correction in interactive transcription of handwritten text. In: Proceedings of the 15th International Conference on Image Analysis, Processing, Vietri sul Mare (Italy) (2009) es_ES
dc.description.references Toselli, A., Juan, A., Keysers, D., González, J., Salvador, I., Ney, H., Vidal, E., Casacuberta, F.: Integrated handwriting recognition and interpretation using finite-state models. Int. J. Pattern Recognit. Artif. Intell. 18(4), 519–539 (2004) es_ES
dc.description.references Toselli, A., Romero, V., Rodríguez, L., Vidal, E.: Computer assisted transcription of handwritten text. In: Proceedings of the 9th International Conference on Document Analysis and Recognition, Curitiba (Brazil), pp. 944–948 (2007) es_ES
dc.description.references Valor, J., Pérez, A., Civera, J., Juan, A.: Integrating a state-of-the-art ASR system into the opencast Matterhorn platform. In: Proceedings of the Advances in Speech and Language Technologies for Iberian Languages (IBERSPEECH 2012), Madrid (Spain), pp. 237–246 (2012) es_ES
dc.description.references Wessel, F., Ney, H.: Unsupervised training of acoustic models for large vocabulary continuous speech recognition. IEEE Trans Speech Audio Process 13(1), 23–31 (2005) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem