- -

A thermodynamic switch modulates abscisic acid receptor sensitivity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A thermodynamic switch modulates abscisic acid receptor sensitivity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dupeux, Florine es_ES
dc.contributor.author Santiago Cuéllar, Julia es_ES
dc.contributor.author Betz, Katja es_ES
dc.contributor.author Twycross, Jamie es_ES
dc.contributor.author Park, Sangyoung es_ES
dc.contributor.author Rodriguez, Lesia es_ES
dc.contributor.author González Guzmán, Miguel es_ES
dc.contributor.author Jensen, Malene Ringkjobing es_ES
dc.contributor.author Krasnogor, Natalio es_ES
dc.contributor.author Blackledge, Martin es_ES
dc.contributor.author Holdsworth, Michael es_ES
dc.contributor.author Cutler, Sean R. es_ES
dc.contributor.author Rodríguez Egea, Pedro Luís es_ES
dc.contributor.author Marquez, Jose Antonio es_ES
dc.date.accessioned 2015-05-20T12:02:21Z
dc.date.issued 2011-10-19
dc.identifier.issn 0261-4189
dc.identifier.uri http://hdl.handle.net/10251/50560
dc.description.abstract [EN] Abscisic acid (ABA) is a key hormone regulating plant growth, development and the response to biotic and abiotic stress. ABA binding to pyrabactin resistance (PYR)/ PYR1-like (PYL)/Regulatory Component of Abscisic acid Receptor (RCAR) intracellular receptors promotes the formation of stable complexes with certain protein phosphatases type 2C (PP2Cs), leading to the activation of ABA signalling. The PYR/PYL/RCAR family contains 14 genes in Arabidopsis and is currently the largest plant hormone receptor family known; however, it is unclear what functional differentiation exists among receptors. Here, we identify two distinct classes of receptors, dimeric and monomeric, with different intrinsic affinities for ABA and whose differential properties are determined by the oligomeric state of their apo forms. Moreover, we find a residue in PYR1, H60, that is variable between family members and plays a key role in determining oligomeric state. In silico modelling of the ABA activation pathway reveals that monomeric receptors have a competitive advantage for binding to ABA and PP2Cs. This work illustrates how receptor oligomerization can modulate hormonal responses and more generally, the sensitivity of a ligand-dependent signalling system. es_ES
dc.description.sponsorship We are grateful to the European Synchrotron Radiation Facility (ESRF) and the EMBL for access to macromolecular crystallography beam lines. This work was supported by Ministerio de Educacion y Ciencia, Fondo Europeo de Desarrollo Regional, Consejo Superior de Investigaciones Cientificas (grant BIO2008-00221 to PLR; fellowships to JS and LR; Juan de la Cierva contract to MGG) and by the BBSRC/EPSRC grant BB/D019613/1 to CPIB (MH, JT and NK). Access to the High Throughput Crystallization facility of the Partnership for Structural Biology in Grenoble (PSB) (https://embl.fr/htxlab) was supported by the P-CUBE project funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 227764. en_EN
dc.language Inglés es_ES
dc.publisher EMBO Press es_ES
dc.relation.ispartof EMBO Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Signal transduction es_ES
dc.subject Hormone receptor es_ES
dc.subject Protein phosphatase 2C es_ES
dc.subject PYR-PYL-RCAR es_ES
dc.subject START domain es_ES
dc.subject Stress response es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.title A thermodynamic switch modulates abscisic acid receptor sensitivity es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1038/emboj.2011.294
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2008-00221/ES/REGULACION POR ACIDO ABSCISICO DE LA RESPUESTA AL ESTRES HIDRICO, CRECIMIENTO Y DESARROLLO VEGETAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/227764/EU/Infrastructure for Protein Production Platforms/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RCUK/BBSRC/BB/D019613/1/GB/
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//BB%2FD019613%2F1/GB/Centre for Plant Integrative Biology/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Dupeux, F.; Santiago Cuéllar, J.; Betz, K.; Twycross, J.; Park, S.; Rodriguez, L.; González Guzmán, M.... (2011). A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO Journal. 30:4171-4184. https://doi.org/10.1038/emboj.2011.294 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/emboj.2011.294 es_ES
dc.description.upvformatpinicio 4171 es_ES
dc.description.upvformatpfin 4184 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.relation.senia 219105
dc.identifier.eissn 1460-2075
dc.identifier.pmid 21847091 en_EN
dc.identifier.pmcid PMC3199383 en_EN
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Barrero, J. M., Piqueras, P., González-Guzmán, M., Serrano, R., Rodríguez, P. L., Ponce, M. R., & Micol, J. L. (2005). A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. Journal of Experimental Botany, 56(418), 2071-2083. doi:10.1093/jxb/eri206 es_ES
dc.description.references Belin, C., de Franco, P.-O., Bourbousse, C., Chaignepain, S., Schmitter, J.-M., Vavasseur, A., … Thomine, S. (2006). Identification of Features Regulating OST1 Kinase Activity and OST1 Function in Guard Cells. Plant Physiology, 141(4), 1316-1327. doi:10.1104/pp.106.079327 es_ES
dc.description.references Cheng, W.-H., Endo, A., Zhou, L., Penney, J., Chen, H.-C., Arroyo, A., … Sheen, J. (2002). A Unique Short-Chain Dehydrogenase/Reductase in Arabidopsis Glucose Signaling and Abscisic Acid Biosynthesis and Functions. The Plant Cell, 14(11), 2723-2743. doi:10.1105/tpc.006494 es_ES
dc.description.references Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122 es_ES
dc.description.references Dupeux, F., Antoni, R., Betz, K., Santiago, J., Gonzalez-Guzman, M., Rodriguez, L., … Márquez, J. A. (2011). Modulation of Abscisic Acid Signaling in Vivo by an Engineered Receptor-Insensitive Protein Phosphatase Type 2C Allele. Plant Physiology, 156(1), 106-116. doi:10.1104/pp.110.170894 es_ES
dc.description.references Emsley, P., & Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallographica Section D Biological Crystallography, 60(12), 2126-2132. doi:10.1107/s0907444904019158 es_ES
dc.description.references Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.-Y., … Zhu, J.-K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature, 462(7273), 660-664. doi:10.1038/nature08599 es_ES
dc.description.references Fujii, H., & Zhu, J.-K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences, 106(20), 8380-8385. doi:10.1073/pnas.0903144106 es_ES
dc.description.references Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., … Yamaguchi-Shinozaki, K. (2009). Three SnRK2 Protein Kinases are the Main Positive Regulators of Abscisic Acid Signaling in Response to Water Stress in Arabidopsis. Plant and Cell Physiology, 50(12), 2123-2132. doi:10.1093/pcp/pcp147 es_ES
dc.description.references Geiger, D., Maierhofer, T., AL-Rasheid, K. A. S., Scherzer, S., Mumm, P., Liese, A., … Hedrich, R. (2011). Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1. Science Signaling, 4(173), ra32-ra32. doi:10.1126/scisignal.2001346 es_ES
dc.description.references Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., … Hedrich, R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences, 106(50), 21425-21430. doi:10.1073/pnas.0912021106 es_ES
dc.description.references Gerard, F. C. A., Ribeiro, E. de A., Albertini, A. A. V., Gutsche, I., Zaccai, G., Ruigrok, R. W. H., & Jamin, M. (2007). UnphosphorylatedRhabdoviridaePhosphoproteins Form Elongated Dimers in Solution†. Biochemistry, 46(36), 10328-10338. doi:10.1021/bi7007799 es_ES
dc.description.references Hansen, N., & Ostermeier, A. (2001). Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation, 9(2), 159-195. doi:10.1162/106365601750190398 es_ES
dc.description.references Harris, M. J., Outlaw, W. H., Mertens, R., & Weiler, E. W. (1988). Water-stress-induced changes in the abscisic acid content of guard cells and other cells of Vicia faba L. leaves as determined by enzyme-amplified immunoassay. Proceedings of the National Academy of Sciences, 85(8), 2584-2588. doi:10.1073/pnas.85.8.2584 es_ES
dc.description.references Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., & Pease, L. R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77(1), 51-59. doi:10.1016/0378-1119(89)90358-2 es_ES
dc.description.references Huang, D., Jaradat, M. R., Wu, W., Ambrose, S. J., Ross, A. R., Abrams, S. R., & Cutler, A. J. (2007). Structural analogs of ABA reveal novel features of ABA perception and signaling in Arabidopsis. The Plant Journal, 50(3), 414-428. doi:10.1111/j.1365-313x.2007.03056.x es_ES
dc.description.references Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., … Harter, K. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. The Plant Journal, 50(2), 347-363. doi:10.1111/j.1365-313x.2007.03052.x es_ES
dc.description.references Kline, K. G., Barrett-Wilt, G. A., & Sussman, M. R. (2010). In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proceedings of the National Academy of Sciences, 107(36), 15986-15991. doi:10.1073/pnas.1007879107 es_ES
dc.description.references Lee, K. H., Piao, H. L., Kim, H.-Y., Choi, S. M., Jiang, F., Hartung, W., … Hwang, I. (2006). Activation of Glucosidase via Stress-Induced Polymerization Rapidly Increases Active Pools of Abscisic Acid. Cell, 126(6), 1109-1120. doi:10.1016/j.cell.2006.07.034 es_ES
dc.description.references Lee, S. C., Lan, W., Buchanan, B. B., & Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences, 106(50), 21419-21424. doi:10.1073/pnas.0910601106 es_ES
dc.description.references Leonhardt, N., Kwak, J. M., Robert, N., Waner, D., Leonhardt, G., & Schroeder, J. I. (2004). Microarray Expression Analyses of Arabidopsis Guard Cells and Isolation of a Recessive Abscisic Acid Hypersensitive Protein Phosphatase 2C Mutant. The Plant Cell, 16(3), 596-615. doi:10.1105/tpc.019000 es_ES
dc.description.references Leung, J., Bouvier-Durand, M., Morris, P., Guerrier, D., Chefdor, F., & Giraudat, J. (1994). Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science, 264(5164), 1448-1452. doi:10.1126/science.7910981 es_ES
dc.description.references Márquez, J. A., Galfré, E., Dupeux, F., Flot, D., Moran, O., & Dimasi, N. (2007). The Crystal Structure of the Extracellular Domain of the Inhibitor Receptor Expressed on Myeloid Cells IREM-1. Journal of Molecular Biology, 367(2), 310-318. doi:10.1016/j.jmb.2007.01.011 es_ES
dc.description.references McCourt, P., & Creelman, R. (2008). The ABA receptors – we report you decide. Current Opinion in Plant Biology, 11(5), 474-478. doi:10.1016/j.pbi.2008.06.014 es_ES
dc.description.references McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., & Read, R. J. (2007). Phasercrystallographic software. Journal of Applied Crystallography, 40(4), 658-674. doi:10.1107/s0021889807021206 es_ES
dc.description.references Melcher, K., Ng, L.-M., Zhou, X. E., Soon, F.-F., Xu, Y., Suino-Powell, K. M., … Xu, H. E. (2009). A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature, 462(7273), 602-608. doi:10.1038/nature08613 es_ES
dc.description.references Melcher, K., Xu, Y., Ng, L.-M., Zhou, X. E., Soon, F.-F., Chinnusamy, V., … Xu, H. E. (2010). Identification and mechanism of ABA receptor antagonism. Nature Structural & Molecular Biology, 17(9), 1102-1108. doi:10.1038/nsmb.1887 es_ES
dc.description.references Melcher, K., Zhou, X. E., & Xu, H. E. (2010). Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling. Current Opinion in Structural Biology, 20(6), 722-729. doi:10.1016/j.sbi.2010.09.007 es_ES
dc.description.references Meyer, K., Leube, M., & Grill, E. (1994). A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science, 264(5164), 1452-1455. doi:10.1126/science.8197457 es_ES
dc.description.references Miyazono, K., Miyakawa, T., Sawano, Y., Kubota, K., Kang, H.-J., Asano, A., … Tanokura, M. (2009). Structural basis of abscisic acid signalling. Nature, 462(7273), 609-614. doi:10.1038/nature08583 es_ES
dc.description.references Murshudov, G. N., Vagin, A. A., & Dodson, E. J. (1997). Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Crystallographica Section D Biological Crystallography, 53(3), 240-255. doi:10.1107/s0907444996012255 es_ES
dc.description.references Mustilli, A.-C., Merlot, S., Vavasseur, A., Fenzi, F., & Giraudat, J. (2002). Arabidopsis OST1 Protein Kinase Mediates the Regulation of Stomatal Aperture by Abscisic Acid and Acts Upstream of Reactive Oxygen Species Production. The Plant Cell, 14(12), 3089-3099. doi:10.1105/tpc.007906 es_ES
dc.description.references Nambara, E., & Marion-Poll, A. (2005). ABSCISIC ACID BIOSYNTHESIS AND CATABOLISM. Annual Review of Plant Biology, 56(1), 165-185. doi:10.1146/annurev.arplant.56.032604.144046 es_ES
dc.description.references Nishimura, N., Hitomi, K., Arvai, A. S., Rambo, R. P., Hitomi, C., Cutler, S. R., … Getzoff, E. D. (2009). Structural Mechanism of Abscisic Acid Binding and Signaling by Dimeric PYR1. Science, 326(5958), 1373-1379. doi:10.1126/science.1181829 es_ES
dc.description.references Nishimura, N., Sarkeshik, A., Nito, K., Park, S.-Y., Wang, A., Carvalho, P. C., … Schroeder, J. I. (2009). PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. The Plant Journal, 61(2), 290-299. doi:10.1111/j.1365-313x.2009.04054.x es_ES
dc.description.references Peterson, F. C., Burgie, E. S., Park, S.-Y., Jensen, D. R., Weiner, J. J., Bingman, C. A., … Volkman, B. F. (2010). Structural basis for selective activation of ABA receptors. Nature Structural & Molecular Biology, 17(9), 1109-1113. doi:10.1038/nsmb.1898 es_ES
dc.description.references ROMERO-CAMPERO, F. J., TWYCROSS, J., CÁMARA, M., BENNETT, M., GHEORGHE, M., & KRASNOGOR, N. (2009). MODULAR ASSEMBLY OF CELL SYSTEMS BIOLOGY MODELS USING P SYSTEMS. International Journal of Foundations of Computer Science, 20(03), 427-442. doi:10.1142/s0129054109006668 es_ES
dc.description.references Rubio, S., Rodrigues, A., Saez, A., Dizon, M. B., Galle, A., Kim, T.-H., … Rodriguez, P. L. (2009). Triple Loss of Function of Protein Phosphatases Type 2C Leads to Partial Constitutive Response to Endogenous Abscisic Acid. Plant Physiology, 150(3), 1345-1355. doi:10.1104/pp.109.137174 es_ES
dc.description.references Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M. P., Nicolas, C., Lorenzo, O., & Rodriguez, P. L. (2003). Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2CHAB1reveal its role as a negative regulator of abscisic acid signalling. The Plant Journal, 37(3), 354-369. doi:10.1046/j.1365-313x.2003.01966.x es_ES
dc.description.references Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S.-Y., Jamin, M., … Márquez, J. A. (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature, 462(7273), 665-668. doi:10.1038/nature08591 es_ES
dc.description.references Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.x es_ES
dc.description.references Szostkiewicz, I., Richter, K., Kepka, M., Demmel, S., Ma, Y., Korte, A., … Grill, E. (2010). Closely related receptor complexes differ in their ABA selectivity and sensitivity. The Plant Journal, 61(1), 25-35. doi:10.1111/j.1365-313x.2009.04025.x es_ES
dc.description.references TREWAVAS, A. (1991). How do plant growth substances work? II. Plant, Cell and Environment, 14(1), 1-12. doi:10.1111/j.1365-3040.1991.tb01366.x es_ES
dc.description.references Twycross, J., Band, L. R., Bennett, M. J., King, J. R., & Krasnogor, N. (2010). Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study. BMC Systems Biology, 4(1), 34. doi:10.1186/1752-0509-4-34 es_ES
dc.description.references Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., … Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences, 106(41), 17588-17593. doi:10.1073/pnas.0907095106 es_ES
dc.description.references Verslues, P. E., & Zhu, J.-K. (2007). New developments in abscisic acid perception and metabolism. Current Opinion in Plant Biology, 10(5), 447-452. doi:10.1016/j.pbi.2007.08.004 es_ES
dc.description.references Vlad, F., Rubio, S., Rodrigues, A., Sirichandra, C., Belin, C., Robert, N., … Merlot, S. (2009). Protein Phosphatases 2C Regulate the Activation of the Snf1-Related Kinase OST1 by Abscisic Acid in Arabidopsis. The Plant Cell, 21(10), 3170-3184. doi:10.1105/tpc.109.069179 es_ES
dc.description.references Weiner, J. J., Peterson, F. C., Volkman, B. F., & Cutler, S. R. (2010). Structural and functional insights into core ABA signaling. Current Opinion in Plant Biology, 13(5), 495-502. doi:10.1016/j.pbi.2010.09.007 es_ES
dc.description.references Wyatt, P. J. (1998). Submicrometer Particle Sizing by Multiangle Light Scattering following Fractionation. Journal of Colloid and Interface Science, 197(1), 9-20. doi:10.1006/jcis.1997.5215 es_ES
dc.description.references Yin, P., Fan, H., Hao, Q., Yuan, X., Wu, D., Pang, Y., … Yan, N. (2009). Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nature Structural & Molecular Biology, 16(12), 1230-1236. doi:10.1038/nsmb.1730 es_ES
dc.description.references Yoshida, R., Hobo, T., Ichimura, K., Mizoguchi, T., Takahashi, F., Aronso, J., … Shinozaki, K. (2002). ABA-Activated SnRK2 Protein Kinase is Required for Dehydration Stress Signaling in Arabidopsis. Plant and Cell Physiology, 43(12), 1473-1483. doi:10.1093/pcp/pcf188 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem