Mostrar el registro sencillo del ítem
dc.contributor.author | Dupeux, Florine | es_ES |
dc.contributor.author | Santiago Cuéllar, Julia | es_ES |
dc.contributor.author | Betz, Katja | es_ES |
dc.contributor.author | Twycross, Jamie | es_ES |
dc.contributor.author | Park, Sangyoung | es_ES |
dc.contributor.author | Rodriguez, Lesia | es_ES |
dc.contributor.author | González Guzmán, Miguel | es_ES |
dc.contributor.author | Jensen, Malene Ringkjobing | es_ES |
dc.contributor.author | Krasnogor, Natalio | es_ES |
dc.contributor.author | Blackledge, Martin | es_ES |
dc.contributor.author | Holdsworth, Michael | es_ES |
dc.contributor.author | Cutler, Sean R. | es_ES |
dc.contributor.author | Rodríguez Egea, Pedro Luís | es_ES |
dc.contributor.author | Marquez, Jose Antonio | es_ES |
dc.date.accessioned | 2015-05-20T12:02:21Z | |
dc.date.issued | 2011-10-19 | |
dc.identifier.issn | 0261-4189 | |
dc.identifier.uri | http://hdl.handle.net/10251/50560 | |
dc.description.abstract | [EN] Abscisic acid (ABA) is a key hormone regulating plant growth, development and the response to biotic and abiotic stress. ABA binding to pyrabactin resistance (PYR)/ PYR1-like (PYL)/Regulatory Component of Abscisic acid Receptor (RCAR) intracellular receptors promotes the formation of stable complexes with certain protein phosphatases type 2C (PP2Cs), leading to the activation of ABA signalling. The PYR/PYL/RCAR family contains 14 genes in Arabidopsis and is currently the largest plant hormone receptor family known; however, it is unclear what functional differentiation exists among receptors. Here, we identify two distinct classes of receptors, dimeric and monomeric, with different intrinsic affinities for ABA and whose differential properties are determined by the oligomeric state of their apo forms. Moreover, we find a residue in PYR1, H60, that is variable between family members and plays a key role in determining oligomeric state. In silico modelling of the ABA activation pathway reveals that monomeric receptors have a competitive advantage for binding to ABA and PP2Cs. This work illustrates how receptor oligomerization can modulate hormonal responses and more generally, the sensitivity of a ligand-dependent signalling system. | es_ES |
dc.description.sponsorship | We are grateful to the European Synchrotron Radiation Facility (ESRF) and the EMBL for access to macromolecular crystallography beam lines. This work was supported by Ministerio de Educacion y Ciencia, Fondo Europeo de Desarrollo Regional, Consejo Superior de Investigaciones Cientificas (grant BIO2008-00221 to PLR; fellowships to JS and LR; Juan de la Cierva contract to MGG) and by the BBSRC/EPSRC grant BB/D019613/1 to CPIB (MH, JT and NK). Access to the High Throughput Crystallization facility of the Partnership for Structural Biology in Grenoble (PSB) (https://embl.fr/htxlab) was supported by the P-CUBE project funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 227764. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | EMBO Press | es_ES |
dc.relation.ispartof | EMBO Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Signal transduction | es_ES |
dc.subject | Hormone receptor | es_ES |
dc.subject | Protein phosphatase 2C | es_ES |
dc.subject | PYR-PYL-RCAR | es_ES |
dc.subject | START domain | es_ES |
dc.subject | Stress response | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.subject.classification | MICROBIOLOGIA | es_ES |
dc.title | A thermodynamic switch modulates abscisic acid receptor sensitivity | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1038/emboj.2011.294 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIO2008-00221/ES/REGULACION POR ACIDO ABSCISICO DE LA RESPUESTA AL ESTRES HIDRICO, CRECIMIENTO Y DESARROLLO VEGETAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/227764/EU/Infrastructure for Protein Production Platforms/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/RCUK/BBSRC/BB/D019613/1/GB/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//BB%2FD019613%2F1/GB/Centre for Plant Integrative Biology/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Dupeux, F.; Santiago Cuéllar, J.; Betz, K.; Twycross, J.; Park, S.; Rodriguez, L.; González Guzmán, M.... (2011). A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO Journal. 30:4171-4184. https://doi.org/10.1038/emboj.2011.294 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1038/emboj.2011.294 | es_ES |
dc.description.upvformatpinicio | 4171 | es_ES |
dc.description.upvformatpfin | 4184 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.relation.senia | 219105 | |
dc.identifier.eissn | 1460-2075 | |
dc.identifier.pmid | 21847091 | en_EN |
dc.identifier.pmcid | PMC3199383 | en_EN |
dc.contributor.funder | UK Research and Innovation | es_ES |
dc.contributor.funder | Engineering and Physical Sciences Research Council, Reino Unido | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Barrero, J. M., Piqueras, P., González-Guzmán, M., Serrano, R., Rodríguez, P. L., Ponce, M. R., & Micol, J. L. (2005). A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. Journal of Experimental Botany, 56(418), 2071-2083. doi:10.1093/jxb/eri206 | es_ES |
dc.description.references | Belin, C., de Franco, P.-O., Bourbousse, C., Chaignepain, S., Schmitter, J.-M., Vavasseur, A., … Thomine, S. (2006). Identification of Features Regulating OST1 Kinase Activity and OST1 Function in Guard Cells. Plant Physiology, 141(4), 1316-1327. doi:10.1104/pp.106.079327 | es_ES |
dc.description.references | Cheng, W.-H., Endo, A., Zhou, L., Penney, J., Chen, H.-C., Arroyo, A., … Sheen, J. (2002). A Unique Short-Chain Dehydrogenase/Reductase in Arabidopsis Glucose Signaling and Abscisic Acid Biosynthesis and Functions. The Plant Cell, 14(11), 2723-2743. doi:10.1105/tpc.006494 | es_ES |
dc.description.references | Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122 | es_ES |
dc.description.references | Dupeux, F., Antoni, R., Betz, K., Santiago, J., Gonzalez-Guzman, M., Rodriguez, L., … Márquez, J. A. (2011). Modulation of Abscisic Acid Signaling in Vivo by an Engineered Receptor-Insensitive Protein Phosphatase Type 2C Allele. Plant Physiology, 156(1), 106-116. doi:10.1104/pp.110.170894 | es_ES |
dc.description.references | Emsley, P., & Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallographica Section D Biological Crystallography, 60(12), 2126-2132. doi:10.1107/s0907444904019158 | es_ES |
dc.description.references | Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.-Y., … Zhu, J.-K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature, 462(7273), 660-664. doi:10.1038/nature08599 | es_ES |
dc.description.references | Fujii, H., & Zhu, J.-K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences, 106(20), 8380-8385. doi:10.1073/pnas.0903144106 | es_ES |
dc.description.references | Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., … Yamaguchi-Shinozaki, K. (2009). Three SnRK2 Protein Kinases are the Main Positive Regulators of Abscisic Acid Signaling in Response to Water Stress in Arabidopsis. Plant and Cell Physiology, 50(12), 2123-2132. doi:10.1093/pcp/pcp147 | es_ES |
dc.description.references | Geiger, D., Maierhofer, T., AL-Rasheid, K. A. S., Scherzer, S., Mumm, P., Liese, A., … Hedrich, R. (2011). Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1. Science Signaling, 4(173), ra32-ra32. doi:10.1126/scisignal.2001346 | es_ES |
dc.description.references | Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., … Hedrich, R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences, 106(50), 21425-21430. doi:10.1073/pnas.0912021106 | es_ES |
dc.description.references | Gerard, F. C. A., Ribeiro, E. de A., Albertini, A. A. V., Gutsche, I., Zaccai, G., Ruigrok, R. W. H., & Jamin, M. (2007). UnphosphorylatedRhabdoviridaePhosphoproteins Form Elongated Dimers in Solution†. Biochemistry, 46(36), 10328-10338. doi:10.1021/bi7007799 | es_ES |
dc.description.references | Hansen, N., & Ostermeier, A. (2001). Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation, 9(2), 159-195. doi:10.1162/106365601750190398 | es_ES |
dc.description.references | Harris, M. J., Outlaw, W. H., Mertens, R., & Weiler, E. W. (1988). Water-stress-induced changes in the abscisic acid content of guard cells and other cells of Vicia faba L. leaves as determined by enzyme-amplified immunoassay. Proceedings of the National Academy of Sciences, 85(8), 2584-2588. doi:10.1073/pnas.85.8.2584 | es_ES |
dc.description.references | Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., & Pease, L. R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77(1), 51-59. doi:10.1016/0378-1119(89)90358-2 | es_ES |
dc.description.references | Huang, D., Jaradat, M. R., Wu, W., Ambrose, S. J., Ross, A. R., Abrams, S. R., & Cutler, A. J. (2007). Structural analogs of ABA reveal novel features of ABA perception and signaling in Arabidopsis. The Plant Journal, 50(3), 414-428. doi:10.1111/j.1365-313x.2007.03056.x | es_ES |
dc.description.references | Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., … Harter, K. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. The Plant Journal, 50(2), 347-363. doi:10.1111/j.1365-313x.2007.03052.x | es_ES |
dc.description.references | Kline, K. G., Barrett-Wilt, G. A., & Sussman, M. R. (2010). In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proceedings of the National Academy of Sciences, 107(36), 15986-15991. doi:10.1073/pnas.1007879107 | es_ES |
dc.description.references | Lee, K. H., Piao, H. L., Kim, H.-Y., Choi, S. M., Jiang, F., Hartung, W., … Hwang, I. (2006). Activation of Glucosidase via Stress-Induced Polymerization Rapidly Increases Active Pools of Abscisic Acid. Cell, 126(6), 1109-1120. doi:10.1016/j.cell.2006.07.034 | es_ES |
dc.description.references | Lee, S. C., Lan, W., Buchanan, B. B., & Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences, 106(50), 21419-21424. doi:10.1073/pnas.0910601106 | es_ES |
dc.description.references | Leonhardt, N., Kwak, J. M., Robert, N., Waner, D., Leonhardt, G., & Schroeder, J. I. (2004). Microarray Expression Analyses of Arabidopsis Guard Cells and Isolation of a Recessive Abscisic Acid Hypersensitive Protein Phosphatase 2C Mutant. The Plant Cell, 16(3), 596-615. doi:10.1105/tpc.019000 | es_ES |
dc.description.references | Leung, J., Bouvier-Durand, M., Morris, P., Guerrier, D., Chefdor, F., & Giraudat, J. (1994). Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science, 264(5164), 1448-1452. doi:10.1126/science.7910981 | es_ES |
dc.description.references | Márquez, J. A., Galfré, E., Dupeux, F., Flot, D., Moran, O., & Dimasi, N. (2007). The Crystal Structure of the Extracellular Domain of the Inhibitor Receptor Expressed on Myeloid Cells IREM-1. Journal of Molecular Biology, 367(2), 310-318. doi:10.1016/j.jmb.2007.01.011 | es_ES |
dc.description.references | McCourt, P., & Creelman, R. (2008). The ABA receptors – we report you decide. Current Opinion in Plant Biology, 11(5), 474-478. doi:10.1016/j.pbi.2008.06.014 | es_ES |
dc.description.references | McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., & Read, R. J. (2007). Phasercrystallographic software. Journal of Applied Crystallography, 40(4), 658-674. doi:10.1107/s0021889807021206 | es_ES |
dc.description.references | Melcher, K., Ng, L.-M., Zhou, X. E., Soon, F.-F., Xu, Y., Suino-Powell, K. M., … Xu, H. E. (2009). A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature, 462(7273), 602-608. doi:10.1038/nature08613 | es_ES |
dc.description.references | Melcher, K., Xu, Y., Ng, L.-M., Zhou, X. E., Soon, F.-F., Chinnusamy, V., … Xu, H. E. (2010). Identification and mechanism of ABA receptor antagonism. Nature Structural & Molecular Biology, 17(9), 1102-1108. doi:10.1038/nsmb.1887 | es_ES |
dc.description.references | Melcher, K., Zhou, X. E., & Xu, H. E. (2010). Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling. Current Opinion in Structural Biology, 20(6), 722-729. doi:10.1016/j.sbi.2010.09.007 | es_ES |
dc.description.references | Meyer, K., Leube, M., & Grill, E. (1994). A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science, 264(5164), 1452-1455. doi:10.1126/science.8197457 | es_ES |
dc.description.references | Miyazono, K., Miyakawa, T., Sawano, Y., Kubota, K., Kang, H.-J., Asano, A., … Tanokura, M. (2009). Structural basis of abscisic acid signalling. Nature, 462(7273), 609-614. doi:10.1038/nature08583 | es_ES |
dc.description.references | Murshudov, G. N., Vagin, A. A., & Dodson, E. J. (1997). Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Crystallographica Section D Biological Crystallography, 53(3), 240-255. doi:10.1107/s0907444996012255 | es_ES |
dc.description.references | Mustilli, A.-C., Merlot, S., Vavasseur, A., Fenzi, F., & Giraudat, J. (2002). Arabidopsis OST1 Protein Kinase Mediates the Regulation of Stomatal Aperture by Abscisic Acid and Acts Upstream of Reactive Oxygen Species Production. The Plant Cell, 14(12), 3089-3099. doi:10.1105/tpc.007906 | es_ES |
dc.description.references | Nambara, E., & Marion-Poll, A. (2005). ABSCISIC ACID BIOSYNTHESIS AND CATABOLISM. Annual Review of Plant Biology, 56(1), 165-185. doi:10.1146/annurev.arplant.56.032604.144046 | es_ES |
dc.description.references | Nishimura, N., Hitomi, K., Arvai, A. S., Rambo, R. P., Hitomi, C., Cutler, S. R., … Getzoff, E. D. (2009). Structural Mechanism of Abscisic Acid Binding and Signaling by Dimeric PYR1. Science, 326(5958), 1373-1379. doi:10.1126/science.1181829 | es_ES |
dc.description.references | Nishimura, N., Sarkeshik, A., Nito, K., Park, S.-Y., Wang, A., Carvalho, P. C., … Schroeder, J. I. (2009). PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. The Plant Journal, 61(2), 290-299. doi:10.1111/j.1365-313x.2009.04054.x | es_ES |
dc.description.references | Peterson, F. C., Burgie, E. S., Park, S.-Y., Jensen, D. R., Weiner, J. J., Bingman, C. A., … Volkman, B. F. (2010). Structural basis for selective activation of ABA receptors. Nature Structural & Molecular Biology, 17(9), 1109-1113. doi:10.1038/nsmb.1898 | es_ES |
dc.description.references | ROMERO-CAMPERO, F. J., TWYCROSS, J., CÁMARA, M., BENNETT, M., GHEORGHE, M., & KRASNOGOR, N. (2009). MODULAR ASSEMBLY OF CELL SYSTEMS BIOLOGY MODELS USING P SYSTEMS. International Journal of Foundations of Computer Science, 20(03), 427-442. doi:10.1142/s0129054109006668 | es_ES |
dc.description.references | Rubio, S., Rodrigues, A., Saez, A., Dizon, M. B., Galle, A., Kim, T.-H., … Rodriguez, P. L. (2009). Triple Loss of Function of Protein Phosphatases Type 2C Leads to Partial Constitutive Response to Endogenous Abscisic Acid. Plant Physiology, 150(3), 1345-1355. doi:10.1104/pp.109.137174 | es_ES |
dc.description.references | Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M. P., Nicolas, C., Lorenzo, O., & Rodriguez, P. L. (2003). Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2CHAB1reveal its role as a negative regulator of abscisic acid signalling. The Plant Journal, 37(3), 354-369. doi:10.1046/j.1365-313x.2003.01966.x | es_ES |
dc.description.references | Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S.-Y., Jamin, M., … Márquez, J. A. (2009). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature, 462(7273), 665-668. doi:10.1038/nature08591 | es_ES |
dc.description.references | Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.x | es_ES |
dc.description.references | Szostkiewicz, I., Richter, K., Kepka, M., Demmel, S., Ma, Y., Korte, A., … Grill, E. (2010). Closely related receptor complexes differ in their ABA selectivity and sensitivity. The Plant Journal, 61(1), 25-35. doi:10.1111/j.1365-313x.2009.04025.x | es_ES |
dc.description.references | TREWAVAS, A. (1991). How do plant growth substances work? II. Plant, Cell and Environment, 14(1), 1-12. doi:10.1111/j.1365-3040.1991.tb01366.x | es_ES |
dc.description.references | Twycross, J., Band, L. R., Bennett, M. J., King, J. R., & Krasnogor, N. (2010). Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study. BMC Systems Biology, 4(1), 34. doi:10.1186/1752-0509-4-34 | es_ES |
dc.description.references | Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., … Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences, 106(41), 17588-17593. doi:10.1073/pnas.0907095106 | es_ES |
dc.description.references | Verslues, P. E., & Zhu, J.-K. (2007). New developments in abscisic acid perception and metabolism. Current Opinion in Plant Biology, 10(5), 447-452. doi:10.1016/j.pbi.2007.08.004 | es_ES |
dc.description.references | Vlad, F., Rubio, S., Rodrigues, A., Sirichandra, C., Belin, C., Robert, N., … Merlot, S. (2009). Protein Phosphatases 2C Regulate the Activation of the Snf1-Related Kinase OST1 by Abscisic Acid in Arabidopsis. The Plant Cell, 21(10), 3170-3184. doi:10.1105/tpc.109.069179 | es_ES |
dc.description.references | Weiner, J. J., Peterson, F. C., Volkman, B. F., & Cutler, S. R. (2010). Structural and functional insights into core ABA signaling. Current Opinion in Plant Biology, 13(5), 495-502. doi:10.1016/j.pbi.2010.09.007 | es_ES |
dc.description.references | Wyatt, P. J. (1998). Submicrometer Particle Sizing by Multiangle Light Scattering following Fractionation. Journal of Colloid and Interface Science, 197(1), 9-20. doi:10.1006/jcis.1997.5215 | es_ES |
dc.description.references | Yin, P., Fan, H., Hao, Q., Yuan, X., Wu, D., Pang, Y., … Yan, N. (2009). Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nature Structural & Molecular Biology, 16(12), 1230-1236. doi:10.1038/nsmb.1730 | es_ES |
dc.description.references | Yoshida, R., Hobo, T., Ichimura, K., Mizoguchi, T., Takahashi, F., Aronso, J., … Shinozaki, K. (2002). ABA-Activated SnRK2 Protein Kinase is Required for Dehydration Stress Signaling in Arabidopsis. Plant and Cell Physiology, 43(12), 1473-1483. doi:10.1093/pcp/pcf188 | es_ES |