Mostrar el registro sencillo del ítem
dc.contributor.author | Jiménez Fernández, Eduardo | es_ES |
dc.contributor.author | Sánchez Pérez, Enrique Alfonso | es_ES |
dc.date.accessioned | 2015-05-20T13:16:31Z | |
dc.date.available | 2015-05-20T13:16:31Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1370-1444 | |
dc.identifier.uri | http://hdl.handle.net/10251/50570 | |
dc.description.abstract | [EN] Consider a positive Banach lattice valued vector measure m : Σ → X, its space of 2-integrable functions L2 (m) and a sequence S in it. We analyze the notion of weak m-orthogonality for such an S in these spaces and we prove a Menchoff-Rademacher Theorem on the almost everywhere convergence of series in them. In order to do this, we provide a criterion for determining when there is a functional 0 ≤ x′ ∈ X′ such that S is orthogonal with respect to the scalar positive measure (m, x′ ). As an application, we use the representation of ℓ−sums of L2-spaces as spaces L2 (m) for a suitable vectormeasure m centering our attention in the case of c0-sums. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Belgian Mathematical Society | es_ES |
dc.relation.ispartof | Bulletin of the Bengian Mathematical Society | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Weak orthogonal sequences | es_ES |
dc.subject | Vector measure | es_ES |
dc.subject | Integration | es_ES |
dc.subject | Almost everywhere convergence. | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Weak orthogonal sequences in L^2 of a vector measure and the Menchoff -Rademacher Theorem | es_ES |
dc.type | Artículo | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Jiménez Fernández, E.; Sánchez Pérez, EA. (2012). Weak orthogonal sequences in L^2 of a vector measure and the Menchoff -Rademacher Theorem. Bulletin of the Bengian Mathematical Society. 19(1):63-80. http://hdl.handle.net/10251/50570 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://projecteuclid.org/euclid.bbms/1331153409 | |
dc.description.upvformatpinicio | 63 | es_ES |
dc.description.upvformatpfin | 80 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 212751 |