Mostrar el registro sencillo del ítem
dc.contributor.author | Lucas Alba, Salvador | es_ES |
dc.contributor.author | Meseguer, José | es_ES |
dc.date.accessioned | 2015-05-20T16:02:03Z | |
dc.date.available | 2015-05-20T16:02:03Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/10251/50582 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-13770-4_3 | es_ES |
dc.description.abstract | Reasoning about termination of declarative programs, which are described by means of a computational logic, requires the definition of appropriate abstractions as semantic models of the logic, and also handling the conditional constraints which are often obtained. The formal treatment of such constraints in automated proofs, often using numeric interpretations and (arithmetic) constraint solving can greatly benefit from appropriate techniques to deal with the conditional (in)equations at stake. Existing results from linear algebra or real algebraic geometry are useful to deal with them but have received only scant attention to date. We investigate the definition and use of numeric models for logics and the resolution of linear and algebraic conditional constraints as unifying techniques for proving termination of declarative programs. | es_ES |
dc.description.sponsorship | Developed during a sabbatical year at UIUC. Supported by projects NSF CNS13-19109, MINECO TIN2010-21062-C02-02 and TIN2013-45732-C4-1-P, and GV BEST/2014/026 and PROMETEO/2011/052. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Artificial Intelligence and Symbolic Computation | es_ES |
dc.relation.ispartofseries | Lecture Notes in Computer Science;8884 | |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Termination | es_ES |
dc.subject | Conditional constraints | es_ES |
dc.subject | Program Analysis | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Models for logics and conditional constraints in automated proofs of termination | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-319-13770-4_3 | |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//1319109/US/TWC: Small: Collaborative: Extensible Symbolic Analysis Modulo SMT: Combining the Powers of Rewriting, Narrowing, and SMT Solving in Maude/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2010-21062-C02-02/ES/SWEETLOGICS-UPV/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2013-45732-C4-1-P/ES/UNA APROXIMACION DECLARATIVA AL MODELADO, ANALISIS Y RESOLUCION DE PROBLEMAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//BEST%2F2014%2F026/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2011%2F052/ES/LOGICEXTREME: TECNOLOGIA LOGICA Y SOFTWARE SEGURO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Lucas Alba, S.; Meseguer, J. (2014). Models for logics and conditional constraints in automated proofs of termination. En Artificial Intelligence and Symbolic Computation. Springer Verlag (Germany). 9-20. https://doi.org/10.1007/978-3-319-13770-4_3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/978-3-319-13770-4_3 | es_ES |
dc.description.upvformatpinicio | 9 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 279090 | |
dc.contributor.funder | National Science Foundation, EEUU | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving Termination Properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011) | es_ES |
dc.description.references | Alarcón, B., Lucas, S., Navarro-Marset, R.: Using Matrix Interpretations over the Reals in Proofs of Termination. In: Proc. of PROLE 2009, pp. 255–264 (2009) | es_ES |
dc.description.references | Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007) | es_ES |
dc.description.references | Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termination using polynomial interpretations. J. of Aut. Reas. 34(4), 325–363 (2006) | es_ES |
dc.description.references | Endrullis, J., Waldmann, J., Zantema, H.: Matrix Interpretations for Proving Termination of Term Rewriting. J. of Aut. Reas. 40(2-3), 195–220 (2008) | es_ES |
dc.description.references | Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal Termination. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 110–125. Springer, Heidelberg (2008) | es_ES |
dc.description.references | Futatsugi, K., Diaconescu, R.: CafeOBJ Report. AMAST Series. World Scientific (1998) | es_ES |
dc.description.references | Hudak, P., Peyton-Jones, S.J., Wadler, P.: Report on the Functional Programming Language Haskell: a non–strict, purely functional language. Sigplan Notices 27(5), 1–164 (1992) | es_ES |
dc.description.references | Lucas, S.: Context-sensitive computations in functional and functional logic programs. Journal of Functional and Logic Programming 1998(1), 1–61 (1998) | es_ES |
dc.description.references | Lucas, S.: Polynomials over the reals in proofs of termination: from theory to practice. RAIRO Theoretical Informatics and Applications 39(3), 547–586 (2005) | es_ES |
dc.description.references | Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Information Processing Letters 95, 446–453 (2005) | es_ES |
dc.description.references | Lucas, S., Meseguer, J.: Proving Operational Termination of Declarative Programs in General Logics. In: Proc. of PPDP 2014, pp. 111–122. ACM Digital Library (2014) | es_ES |
dc.description.references | Lucas, S., Meseguer, J.: 2D Dependency Pairs for Proving Operational Termination of CTRSs. In: Proc. of WRLA 2014. LNCS, vol. 8663 (to appear, 2014) | es_ES |
dc.description.references | Lucas, S., Meseguer, J., Gutiérrez, R.: Extending the 2D DP Framework for CTRSs. In: Selected papers of LOPSTR 2014. LNCS (to appear, 2015) | es_ES |
dc.description.references | Meseguer, J.: General Logics. In: Ebbinghaus, H.-D., et al. (eds.) Logic Colloquium 1987, pp. 275–329. North-Holland (1989) | es_ES |
dc.description.references | Nguyen, M.T., de Schreye, D., Giesl, J., Schneider-Kamp, P.: Polytool: Polynomial interpretations as a basis for termination of logic programs. Theory and Practice of Logic Programming 11(1), 33–63 (2011) | es_ES |
dc.description.references | Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (April 2002) | es_ES |
dc.description.references | Prestel, A., Delzell, C.N.: Positive Polynomials. In: From Hilbert’s 17th Problem to Real Algebra. Springer, Berlin (2001) | es_ES |
dc.description.references | Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004) | es_ES |
dc.description.references | Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons (1986) | es_ES |
dc.description.references | Zantema, H.: Termination of Context-Sensitive Rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 172–186. Springer, Heidelberg (1997) | es_ES |