- -

Fuzzy metric spaces and applications to perceptual colour-differences

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Fuzzy metric spaces and applications to perceptual colour-differences

Show simple item record

Files in this item

dc.contributor.advisor Gregori Gregori, Valentín es_ES
dc.contributor.advisor Morillas Gómez, Samuel es_ES
dc.contributor.author Miñana Prats, Juan José es_ES
dc.date.accessioned 2015-05-21T09:06:15Z
dc.date.available 2015-05-21T09:06:15Z
dc.date.created 2015-05-05 es_ES
dc.date.issued 2015-05-21 es_ES
dc.identifier.uri http://hdl.handle.net/10251/50612
dc.description.abstract [EN] Fuzzy mathematics has constituted a wide field of research, since L. A. Zadeh introduced in 1965 the concept of fuzzy set. In particular, the problem of constructing a satisfactory theory of fuzzy metric spaces has been investigated by several authors. In 1994, George and Veeramani introduced and studied a notion of fuzzy metric space that constituted a modification of the one given by Kramosil and Michalek. Several authors have contributed to the study of this kind of fuzzy metrics, from the mathematical point of view and for their applications. In this thesis we have contributed to develop the study of these fuzzy metrics, from the mathematical point of view, and we approached the problem of measuring perceptual colour-difference between samples of colour using one of these fuzzy metrics. The contributions of the study carried out in this thesis is summarized as follows: \begin{enumerate} \item[(i)] We have made a detailed study of the fuzzy metric space $(X,M,\cdot)$ where $M$ is given on $X=[0,\infty[$ by $M(x,y,t)=\frac{\min\{x,y\}+t}{\max\{x,y\}+t}$ and others related to it. As a consequence we have introduced five questions in fuzzy metrics related to continuity, extension, contractivity and completion. \item[(ii)] We have answered an open question constructing a fuzzy metric space $(X,M,\ast)$ in which the assignment $f(t)=\lim_n M(a_n,b_n,t)$, where $\{a_n\}$ and $\{b_n\}$ are $M$-Cauchy sequences in $X$, is not a continuous function on $t$. The response to this question has allowed us to characterize the class of completable strong fuzzy metric spaces. \item[(iii)] We have introduced and studied a stronger concept than convergence of sequences in fuzzy metric spaces, which we call $s$-convergence. In our study, we have gotten a characterization of those spaces in which every convergent sequence is $s$-convergent and we have given a classification of fuzzy metrics attending to the behaviour of the fuzzy metric with respect to the different types of convergence. \item[(iv)] We have studied, in the context of fuzzy metric spaces, when certain families of open balls centered at a point are local bases for this point. \item[(v)] We have answered two open questions related to standard convergence, a stronger concept than convergence of sequences in fuzzy metric spaces, introduced in a natural way attending to the concept of standard Cauchy sequence (introduced in \cite{adomain}). These responses have led us to establish conditions under which Cauchyness and convergence should be considered \textit{compatible}. \item[(vi)] As a practical application, we have shown that a certain fuzzy metric is useful for measuring perceptual colour-differences between colour samples. \end{enumerate} en_EN
dc.description.abstract [ES] La matemática fuzzy ha constituido un amplio campo en la investigación, desde que en 1965 L. A. Zadeh introdujo el concepto de conjunto fuzzy. En particular, la construcción de una teoría satisfactoria de espacios métricos fuzzy ha sido un problema investigado por muchos autores. En 1994, George y Veeramani introdujeron y estudiaron una noción de espacio métrico fuzzy que constituía una modificación de la anteriormente dada por Kramosil y Michalek. Muchos autores han contribuido al estudio de este tipo de métricas fuzzy, desde el punto de vista matemático y de sus aplicaciones. En esta tesis hemos contribuido al desarrollo del estudio de estas métricas fuzzy, desde el punto de vista matemático, y hemos abordado el problema de la medida de la diferencia perceptual de color utilizando una de estas métricas. Las contribuciones que aportamos en esta tesis a dicho estudio, se resumen a continuación: \begin{enumerate} \item[(i)] Hemos hecho un estudio detallado del espacio métrico fuzzy $(X,M,\cdot)$ donde $M$ está dada sobre $[0,\infty[$ por la expresión $M(x,y,t)=\frac{\min\{x,y\}+t}{\max\{x,y\}+t}$ y de otros espacios métricos fuzzy relacionados con el. Como consecuencia de este estudio hemos introducido cinco cuestiones en la teoría de las métricas fuzzy relacionadas con continuidad, extensión, contractividad y completación. \item[(ii)] Hemos respondido a una cuestión abierta construyendo un espacio métrico fuzzy $(X,M,\ast)$ en el cual la asignación $f(t)=\lim_n M(a_n,b_n,t)$, donde $\{a_n\}$ y $\{b_n\}$ son sucesiones $M$-Cauchy, no es una función continua sobre $t$. La respuesta a esta cuestión nos ha permitido caracterizar la clase de los espacios métricos fuzzy strong completables. \item[(iii)] Hemos introducido y estudiado un concepto más fuerte que el de convergencia de sucesiones en espacios métricos fuzzy, al que hemos llamado $s$-convergencia. En nuestro estudio hemos conseguido una caracterización de aquellos espacios métricos fuzzy en los cuales toda sucesión convergente es $s$-convergente y hemos dado una clasificación de los espacios métricos fuzzy atendiendo a su comportamiento con respecto a los diferentes tipos de convergencia que se da en él. \item[(iv)] Hemos estudiado, en el contexto de los espacios métricos fuzzy, cuando ciertas familias de bolas abiertas centradas en un punto son base local de este punto. \item[(v)] Hemos respondido a dos cuestiones abiertas relacionadas con la convergencia standard, un concepto más fuerte que el de convergencia de sucesiones en espacios métricos fuzzy, introducido de forma natural a partir del concepto de sucesión de Cauchy standard (introducido en \cite{adomain}). Estas respuestas nos han llevado a establecer unas condiciones bajo las cuales un concepto relacionado con el concepto de sucesión de Cauchy y un concepto relacionado con el de convergencia deberían satisfacer para ser consideradas \textsl{compatibles}. \item[(vi)] Como aplicación práctica, hemos mostrado que una cierta métrica fuzzy es útil para medir diferencia perceptual de color entre muestras de color. \end{enumerate} es_ES
dc.description.abstract [CAT] La matemàtica fuzzy ha constituït un ampli camp en la investigació, des que el 1965 L. A. Zadeh va introduir el concepte de conjunt fuzzy. En particular, la construcció d'una teoria satisfactòria d'espais mètrics fuzzy ha estat un problema investigat per molts autors. El 1994, George i Veeramani introduiren i estudiaren una noció d'espai mètric fuzzy que constituïa una modificació de la donada per Kramosil i Michalek anteriorment. Molts autors han contribuït a l'estudi d'aquest tipus de mètriques fuzzy, des del punt de vista matemàtic i de les seves aplicacions. En aquesta tesi hem contribuït al desenvolupament de l'estudi d'aquestes mètriques fuzzy, des del punt de vista matemàtic, i hem abordat el problema de la mesura de la diferència perceptiva de color utilitzant aquestes mètriques. Les contribucions que aportem en aquesta tesi a tal estudi es resumeixen a continuació: \begin{enumerate} \item[(i)] Hem fet un estudi detallat de l'espai mètric fuzzy $(X,M,\cdot)$ on $M$ està donada sobre $[0,\infty[$ per l'expressió $M(x,y,t)=\frac{\min\{x,y\}+t}{\max\{x,y\}+t}$ i d'altres espais mètrics fuzzy relacionats amb ell. Com a conseqüència d'aquest estudi hem introduït cinc qüestions en la teoria de les mètriques fuzzy relacionades amb continuïtat, extensió, contractividad i completació. \item[(ii)] Hem respost a una qüestió oberta construint un espai mètric fuzzy $ (X, M, \ast) $ en el qual l'assignació $ f (t) = \lim_n M (a_n, b_n, t) $, on $ \{a_n\} $ i $ \{b_n \} $ són successions $ M $-Cauchy, no és una funció contínua sobre $ t $. La resposta a aquesta qüestió ens ha permès caracteritzar la classe dels espais mètrics fuzzy strong completables. \item[(iii)] Hem introduït i estudiat un concepte més fort que el de convergència de successions en espais mètrics fuzzy, al qual hem anomenat $ s $-Convergència. En el nostre estudi hem aconseguit una caracterització d'aquells espais mètrics fuzzy en els quals tota successió convergent és $ s $-convergente i hem donat una classificació dels espais mètrics fuzzy atenent al seu comportament respecte als diferents tipus de convergència que es dóna en ell. \item[(iv)] Hem estudiat, en el context dels espais mètrics fuzzy, quan certes famílies de boles obertes centrades en un punt són base local d'aquest punt. \item[(v)] Hem respost a dues qüestions obertes relacionades amb la convergència estàndard, un concepte més fort que el de convergència de successions en espais mètrics fuzzy, introduït de forma natural a partir del concepte de successió de Cauchy estàndard (introduït en \cite{adomain}). Aquestes respostes ens han portat a establir unes condicions sota les quals un concepte relacionat amb el concepte de successió de Cauchy i un concepte relacionat amb el de convergència haurien de satisfer per a ser considerats \textsl{compatibles}. \item[(vi)] Com a aplicació pràctica, hem mostrat que una certa mètrica fuzzy és útil per mesurar la diferència perceptiva de color entre mostres de color. \end{enumerate} ca_ES
dc.language Inglés es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fuzzy metric space es_ES
dc.subject Completable fuzzy metric space es_ES
dc.subject Strong fuzzy metric es_ES
dc.subject Principal fuzzy metric es_ES
dc.subject Convergent sequence es_ES
dc.subject Cauchy sequence es_ES
dc.subject Perceptual colour-difference es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Fuzzy metric spaces and applications to perceptual colour-differences es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/50612 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Miñana Prats, JJ. (2015). Fuzzy metric spaces and applications to perceptual colour-differences [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/50612 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\4050 es_ES


This item appears in the following Collection(s)

Show simple item record