- -

Morphological variability of the P-wave for premature envision of paroxysmal atrial fibrillation events

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Morphological variability of the P-wave for premature envision of paroxysmal atrial fibrillation events

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez, Arturo es_ES
dc.contributor.author Alcaraz, Raul es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2015-05-22T11:07:57Z
dc.date.available 2015-05-22T11:07:57Z
dc.date.issued 2014-01
dc.identifier.issn 0967-3334
dc.identifier.uri http://hdl.handle.net/10251/50694
dc.description.abstract The present work introduces the first study on the P-wave morphological variability two hours preceding the onset of paroxysmal atrial fibrillation (PAF). The development of non-invasive methods able to track P-wave alterations over time is a clinically relevant tool to anticipate as much as possible the envision of a new PAF episode. This information is essential for further improvement of preventive and patient-tailored treatment strategies, which could avert the loss of sinus rhythm. In this way, risks for the patients could be minimized and their quality of life improved. Recently, the P-wave morphological analysis is drawing increasing attention because differences in morphology can reflect different atrial activation patterns. Indeed, the P-wave morphology study has recently proved to be useful for determining the presence of an underlying pathophysiological condition in patients prone to atrial fibrillation. However, the P-wave morphology variability over time has not been studied yet. In this respect, the present work puts forward some parameters related to the P-wave shape and energy with the ability to quantify non-invasively the notable atrial conduction alterations preceding the onset of PAF. Results showed that P-wave fragmentation and area presented higher variability over time as the onset of PAF approximates. By properly combining these indices, an average global accuracy of 86.33% was achieved to discern between electrocardiogram segments from healthy subjects, far from a PAF episode and less than one hour close to a PAF episode. As a consequence, the P-wave morphology long-term analysis seems to be a useful tool for the non-invasive envision of PAF onset with a reasonable anticipation. Nonetheless, further research is required to corroborate this finding and to validate the capability of the proposed P-wave metrics in the earlier prediction of PAF onset. © 2014 Institute of Physics and Engineering in Medicine. es_ES
dc.description.sponsorship This work was supported by the projects TEC2010-20633 from the Spanish Ministry of Science and Innovation and PPII11-0194-8121 from Junta de Comunidades de Castilla-La Mancha. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Physiological Measurement es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Electrocardiogram es_ES
dc.subject Morphological analysis es_ES
dc.subject P-wave es_ES
dc.subject Variability es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Morphological variability of the P-wave for premature envision of paroxysmal atrial fibrillation events es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0967-3334/35/1/1
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-20633/ES/DESARROLLO Y APLICACION DE ESTIMADORES AVANZADOS DE ORGANIZACION PARA LA CLASIFICACION TERAPEUTICA Y EL SEGUIMIENTO DE PACIENTES CON FIBRILACION AURICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//PPII11-0194-8121/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Grupo de ingeniería en bioseñales e imagen radiológica es_ES
dc.description.bibliographicCitation Martínez, A.; Alcaraz, R.; Rieta, JJ. (2014). Morphological variability of the P-wave for premature envision of paroxysmal atrial fibrillation events. Physiological Measurement. 35(1):1-14. https://doi.org/10.1088/0967-3334/35/1/1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0967-3334/35/1/1 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 285766
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES
dc.description.references Al-Khatib, S. M., Wilkinson, W. E., Sanders, L. L., McCarthy, E. A., & Pritchett, E. L. C. (2000). Observations on the transition from intermittent to permanent atrial fibrillation. American Heart Journal, 140(1), 142-145. doi:10.1067/mhj.2000.107547 es_ES
dc.description.references Arzeno, N. M., Deng, Z.-D., & Poon, C.-S. (2008). Analysis of First-Derivative Based QRS Detection Algorithms. IEEE Transactions on Biomedical Engineering, 55(2), 478-484. doi:10.1109/tbme.2007.912658 es_ES
dc.description.references Barbosa, P. R. B., de Souza Bomfim, A., Barbosa, E. C., Ginefra, P., Helena Cardoso Boghossian, S., Destro, C., & Nadal, J. (2006). Spectral turbulence analysis of the signal-averaged electrocardiogram of the atrial activation as predictor of recurrence of idiopathic and persistent atrial fibrillation. International Journal of Cardiology, 107(3), 307-316. doi:10.1016/j.ijcard.2005.03.073 es_ES
dc.description.references Bollmann, A. (1999). Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the Holter ECG. Cardiovascular Research, 44(1), 60-66. doi:10.1016/s0008-6363(99)00156-x es_ES
dc.description.references Carlson, J., Johansson, R., & Olsson, S. B. (2001). Classification of electrocardiographic P-wave morphology. IEEE Transactions on Biomedical Engineering, 48(4), 401-405. doi:10.1109/10.915704 es_ES
dc.description.references Censi, F., Calcagnini, G., Corazza, I., Mattei, E., Triventi, M., Bartolini, P., & Boriani, G. (2012). On the resolution of ECG acquisition systems for the reliable analysis of the P-wave. Physiological Measurement, 33(2), N11-N17. doi:10.1088/0967-3334/33/2/n11 es_ES
dc.description.references Censi, F., Calcagnini, G., Ricci, C., Ricci, R. P., Santini, M., Grammatico, A., & Bartolini, P. (2007). P-Wave Morphology Assessment by a Gaussian Functions-Based Model in Atrial Fibrillation Patients. IEEE Transactions on Biomedical Engineering, 54(4), 663-672. doi:10.1109/tbme.2006.890134 es_ES
dc.description.references Censi, F., Calcagnini, G., Triventi, M., Mattei, E., Bartolini, P., Corazza, I., & Boriani, G. (2009). Effect of high-pass filtering on ECG signal on the analysis of patients prone to atrial fibrillation. Annali dell Istituto Superiore di Sanità, 45(4). doi:10.1590/s0021-25712009000400012 es_ES
dc.description.references CENSI, F., RICCI, C., CALCAGNINI, G., TRIVENTI, M., RICCI, R. P., SANTINI, M., & BARTOLINI, P. (2008). Time-Domain and Morphological Analysis of the P-Wave. Part I: Technical Aspects for Automatic Quantification of P-Wave Features. Pacing and Clinical Electrophysiology, 31(7), 874-883. doi:10.1111/j.1540-8159.2008.01102.x es_ES
dc.description.references Chesnokov, Y. V. (2008). Complexity and spectral analysis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods. Artificial Intelligence in Medicine, 43(2), 151-165. doi:10.1016/j.artmed.2008.03.009 es_ES
dc.description.references Clavier, L., Boucher, J.-M., Lepage, R., Blanc, J.-J., & Cornily, J.-C. (2002). Automatic P-wave analysis of patients prone to atrial fibrillation. Medical & Biological Engineering & Computing, 40(1), 63-71. doi:10.1007/bf02347697 es_ES
dc.description.references De Bacquer, D., Willekens, J., & De Backer, G. (2007). Long-Term Prognostic Value of P-Wave Characteristics for the Development of Atrial Fibrillation in Subjects Aged 55 to 74 Years at Baseline. The American Journal of Cardiology, 100(5), 850-854. doi:10.1016/j.amjcard.2007.04.017 es_ES
dc.description.references Dilaveris, P. E., & Gialafos, J. E. (2001). P-Wave Dispersion: A Novel Predictor of Paroxysmal Atrial Fibrillation. Annals of Noninvasive Electrocardiology, 6(2), 159-165. doi:10.1111/j.1542-474x.2001.tb00101.x es_ES
dc.description.references Dimmer, C., Tavernier, R., Gjorgov, N., Van Nooten, G., Clement, D. L., & Jordaens, L. (1998). Variations of autonomic tone preceding onset of atrial fibrillation after coronary artery bypass grafting. The American Journal of Cardiology, 82(1), 22-25. doi:10.1016/s0002-9149(98)00231-8 es_ES
dc.description.references Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., … Wann, L. S. (2011). 2011 ACCF/AHA/HRS Focused Updates Incorporated Into the ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation. Circulation, 123(10). doi:10.1161/cir.0b013e318214876d es_ES
dc.description.references Gallagher, M. M., & Camm, J. (1998). Classification of atrial fibrillation. The American Journal of Cardiology, 82(7), 18N-28N. doi:10.1016/s0002-9149(98)00736-x es_ES
dc.description.references GANG, Y., HNATKOVA, K., MANDAL, K., GHURAN, A., & MALIK, M. (2004). Preoperative Electrocardiographic Risk Assessment of Atrial Fibrillation After Coronary Artery Bypass Grafting. Journal of Cardiovascular Electrophysiology, 15(12), 1379-1386. doi:10.1046/j.1540-8167.2004.04084.x es_ES
dc.description.references Ghaffari, A., Homaeinezhad, M. R., Akraminia, M., Atarod, M., & Daevaeiha, M. (2009). A robust wavelet-based multi-lead electrocardiogram delineation algorithm. Medical Engineering & Physics, 31(10), 1219-1227. doi:10.1016/j.medengphy.2009.07.017 es_ES
dc.description.references Go, A. S., Hylek, E. M., Phillips, K. A., Chang, Y., Henault, L. E., Selby, J. V., & Singer, D. E. (2001). Prevalence of Diagnosed Atrial Fibrillation in Adults. JAMA, 285(18), 2370. doi:10.1001/jama.285.18.2370 es_ES
dc.description.references Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003 es_ES
dc.description.references Hickey, B., Heneghan, C., & De Chazal, P. (2004). Non-Episode-Dependent Assessment of Paroxysmal Atrial Fibrillation Through Measurement of RR Interval Dynamics and Atrial Premature Contractions. Annals of Biomedical Engineering, 32(5), 677-687. doi:10.1023/b:abme.0000030233.39769.a4 es_ES
dc.description.references Hogue, C. W., Domitrovich, P. P., Stein, P. K., Despotis, G. D., Re, L., Schuessler, R. B., … Rottman, J. N. (1998). RR Interval Dynamics Before Atrial Fibrillation in Patients After Coronary Artery Bypass Graft Surgery. Circulation, 98(5), 429-434. doi:10.1161/01.cir.98.5.429 es_ES
dc.description.references Holmqvist, F., Platonov, P. G., Carlson, J., Zareba, W., & Moss, A. J. (2009). Altered Interatrial Conduction Detected in MADIT II Patients Bound to Develop Atrial Fibrillation. Annals of Noninvasive Electrocardiology, 14(3), 268-275. doi:10.1111/j.1542-474x.2009.00309.x es_ES
dc.description.references Holmqvist, F., Platonov, P. G., McNitt, S., Polonsky, S., Carlson, J., … Zareba, W. (2010). Abnormal P-Wave Morphology Is a Predictor of Atrial Fibrillation Development and Cardiac Death in MADIT II Patients. Annals of Noninvasive Electrocardiology, 15(1), 63-72. doi:10.1111/j.1542-474x.2009.00341.x es_ES
dc.description.references Hughes, M., & Lip, G. Y. H. (2008). Stroke and thromboembolism in atrial fibrillation: A systematic review of stroke risk factors, risk stratification schema and cost effectiveness data. Thrombosis and Haemostasis, 99(02), 295-304. doi:10.1160/th07-08-0508 es_ES
dc.description.references Ishida, K., Hayashi, H., Miyamoto, A., Sugimoto, Y., Ito, M., Murakami, Y., & Horie, M. (2010). P wave and the development of atrial fibrillation. Heart Rhythm, 7(3), 289-294. doi:10.1016/j.hrthm.2009.11.012 es_ES
dc.description.references Kannel, W. B., Abbott, R. D., Savage, D. D., & McNamara, P. M. (1982). Epidemiologic Features of Chronic Atrial Fibrillation. New England Journal of Medicine, 306(17), 1018-1022. doi:10.1056/nejm198204293061703 es_ES
dc.description.references Kolb, C., Nürnberger, S., Ndrepepa, G., Zrenner, B., Schömig, A., & Schmitt, C. (2001). Modes of initiation of paroxysmal atrial fibrillation from analysis of spontaneously occurring episodes using a 12-lead Holter monitoring system. The American Journal of Cardiology, 88(8), 853-857. doi:10.1016/s0002-9149(01)01891-4 es_ES
dc.description.references Martínez, A., Alcaraz, R., & Rieta, J. J. (2010). Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiological Measurement, 31(11), 1467-1485. doi:10.1088/0967-3334/31/11/005 es_ES
dc.description.references Martínez, A., Alcaraz, R., & Rieta, J. J. (2012). Study on the P-wave feature time course as early predictors of paroxysmal atrial fibrillation. Physiological Measurement, 33(12), 1959-1974. doi:10.1088/0967-3334/33/12/1959 es_ES
dc.description.references Martinez, J. P., Almeida, R., Olmos, S., Rocha, A. P., & Laguna, P. (2004). A Wavelet-Based ECG Delineator: Evaluation on Standard Databases. IEEE Transactions on Biomedical Engineering, 51(4), 570-581. doi:10.1109/tbme.2003.821031 es_ES
dc.description.references Mehta, A., Jain, A. C., Mehta, M. C., & Billie, M. (1997). Left Atrial Abnormality in Acute Myocardial Infarction. The American Journal of Cardiology, 79(6), 807-811. doi:10.1016/s0002-9149(96)00877-6 es_ES
dc.description.references Mohebbi, M., & Ghassemian, H. (2011). Prediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signal. Physiological Measurement, 32(8), 1147-1162. doi:10.1088/0967-3334/32/8/010 es_ES
dc.description.references Mohebbi, M., & Ghassemian, H. (2012). Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal. Computer Methods and Programs in Biomedicine, 105(1), 40-49. doi:10.1016/j.cmpb.2010.07.011 es_ES
dc.description.references Papageorgiou, P., Monahan, K., Boyle, N. G., Seifert, M. J., Beswick, P., Zebede, J., … Josephson, M. E. (1996). Site-Dependent Intra-Atrial Conduction Delay. Circulation, 94(3), 384-389. doi:10.1161/01.cir.94.3.384 es_ES
dc.description.references Passman, R., Beshai, J., Pavri, B., & Kimmel, S. (2001). Predicting post–coronary bypass surgery atrial arrhythmias from the preoperative electrocardiogram. American Heart Journal, 142(5), 806-810. doi:10.1067/mhj.2001.118736 es_ES
dc.description.references Petrutiu, S., Sahakian, A. V., & Swiryn, S. (2007). Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans. EP Europace, 9(7), 466-470. doi:10.1093/europace/eum096 es_ES
dc.description.references Platonov, P. G. (2012). P-Wave Morphology: Underlying Mechanisms and Clinical Implications. Annals of Noninvasive Electrocardiology, 17(3), 161-169. doi:10.1111/j.1542-474x.2012.00534.x es_ES
dc.description.references Shin, D.-G., Yoo, C.-S., Yi, S.-H., Bae, J.-H., Kim, Y.-J., Park, J.-S., & Hong, G.-R. (2006). Prediction of Paroxysmal Atrial Fibrillation Using Nonlinear Analysis of the R-R Interval Dynamics Before the Spontaneous Onset of Atrial Fibrillation. Circulation Journal, 70(1), 94-99. doi:10.1253/circj.70.94 es_ES
dc.description.references Sovilj, S., Van Oosterom, A., Rajsman, G., & Magjarevic, R. (2010). ECG-based prediction of atrial fibrillation development following coronary artery bypass grafting. Physiological Measurement, 31(5), 663-677. doi:10.1088/0967-3334/31/5/005 es_ES
dc.description.references STAFFORD, P. J., KAMALVAND, K., TAN, K., VINCENT, R., & SULKE, N. (1998). Prediction of Maintenance of Sinus Rhythm after Cardioversion of Atrial Fibrillation by Analysis of Serial Signal-Averaged P Waves. Pacing and Clinical Electrophysiology, 21(7), 1387-1395. doi:10.1111/j.1540-8159.1998.tb00209.x es_ES
dc.description.references Stafford, P. J., Robinson, D., & Vincent, R. (1995). Optimal analysis of the signal averaged P wave in patients with paroxysmal atrial fibrillation. Heart, 74(4), 413-418. doi:10.1136/hrt.74.4.413 es_ES
dc.description.references Thong, T., McNames, J., Aboy, M., & Goldstein, B. (2004). Prediction of Paroxysmal Atrial Fibrillation by Analysis of Atrial Premature Complexes. IEEE Transactions on Biomedical Engineering, 51(4), 561-569. doi:10.1109/tbme.2003.821030 es_ES
dc.description.references Tsai, C.-F., Tai, C.-T., Hsieh, M.-H., Lin, W.-S., Yu, W.-C., Ueng, K.-C., … Chen, S.-A. (2000). Initiation of Atrial Fibrillation by Ectopic Beats Originating From the Superior Vena Cava. Circulation, 102(1), 67-74. doi:10.1161/01.cir.102.1.67 es_ES
dc.description.references Tuzcu, V., Nas, S., Börklü, T., & Ugur, A. (2006). Decrease in the heart rate complexity prior to the onset of atrial fibrillation. EP Europace, 8(6), 398-402. doi:10.1093/europace/eul031 es_ES
dc.description.references Van Beeumen, K., Houben, R., Tavernier, R., Ketels, S., & Duytschaever, M. (2010). Changes in P-wave area and P-wave duration after circumferential pulmonary vein isolation. Europace, 12(6), 798-804. doi:10.1093/europace/eup410 es_ES
dc.description.references Vassilikos, V., Dakos, G., Chatzizisis, Y. S., Chouvarda, I., Karvounis, C., Maynard, C., … Styliadis, I. (2011). Novel non-invasive P wave analysis for the prediction of paroxysmal atrial fibrillation recurrences in patients without structural heart disease. International Journal of Cardiology, 153(2), 165-172. doi:10.1016/j.ijcard.2010.08.029 es_ES
dc.description.references VASSILIKOS, V., DAKOS, G., CHOUVARDA, I., KARAGOUNIS, L., KARVOUNIS, H., MAGLAVERAS, N., … LOURIDAS, G. (2003). Can P Wave Wavelet Analysis Predict Atrial Fibrillation After Coronary Artery Bypass Grafting? Pacing and Clinical Electrophysiology, 26(1p2), 305-309. doi:10.1046/j.1460-9592.2003.00038.x es_ES
dc.description.references Verheugt, F. W. A. (2013). Advances in Stroke Prevention in Atrial Fibrillation: Enhanced Risk Stratification Combined With the Newer Oral Anticoagulants. Clinical Cardiology, 36(6), 312-322. doi:10.1002/clc.22122 es_ES
dc.description.references Vikman, S., Mäkikallio, T. H., Yli-Mäyry, S., Pikkujämsä, S., Koivisto, A.-M., Reinikainen, P., … Huikuri, H. V. (1999). Altered Complexity and Correlation Properties of R-R Interval Dynamics Before the Spontaneous Onset of Paroxysmal Atrial Fibrillation. Circulation, 100(20), 2079-2084. doi:10.1161/01.cir.100.20.2079 es_ES
dc.description.references Wijffels, M. C. E. F., Kirchhof, C. J. H. J., Dorland, R., & Allessie, M. A. (1995). Atrial Fibrillation Begets Atrial Fibrillation. Circulation, 92(7), 1954-1968. doi:10.1161/01.cir.92.7.1954 es_ES
dc.description.references Wolf, P. A., Dawber, T. R., Thomas, H. E., & Kannel, W. B. (1978). Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: The fiamingham Study. Neurology, 28(10), 973-973. doi:10.1212/wnl.28.10.973 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem