Mostrar el registro sencillo del ítem
dc.contributor.author | Lerma Elvira, Néstor | es_ES |
dc.contributor.author | Paredes Arquiola, Javier | es_ES |
dc.contributor.author | Molina González, José Luis | es_ES |
dc.contributor.author | Andreu Álvarez, Joaquín | es_ES |
dc.date.accessioned | 2015-05-22T11:30:15Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1464-7141 | |
dc.identifier.uri | http://hdl.handle.net/10251/50699 | |
dc.description | "© IWA Publishing [2014]. The definitive peer-reviewed and edited version of this article is published in Journal of Hydroinformatics , vol.. 16, n. 1 (33-49) 2014. DOI: 10.2166/hydro.2013.151 and is available at www.iwapublishing.com” | es_ES |
dc.description.abstract | Obtaining operation rules (OR) for multi-reservoir water systems through optimization and simulation processes has been an intensely studied topic. However, an innovative approach for the integration of two approaches network flow simulation models and evolutionary multi-objective optimization (EMO) is proposed for obtaining the operation rules for integrated water resource management (IWRM). This paper demonstrates a methodology based on the coupling of an EMO algorithm (NSGA-II or Non-dominated Sorting Genetic Algorithm) with an existing water resources allocation simulation network flow model (SIMGES). The implementation is made for a real case study, the Mijares River basin (Spain) which is characterized by severe drought events, a very traditional water rights system and its historical implementation of the conjunctive use of surface and ground water. The established operation rules aim to minimize the maximum deficit in the short term without compromising the maximum deficits in the long term. This research proves the utility of the proposed methodology by coupling NSGA-II and SIMGES to find the optimal reservoir operation rules in multi-reservoir water systems. | es_ES |
dc.description.sponsorship | The authors wish to thank the Confederacion Hidrografica del Jucar (Spanish Ministry of the Environment) for the data provided in developing this study, the Comision Interministerial de Ciencia y Tecnologia (CICYT or Spanish Ministry of Science and Innovation) for funding the projects INTEGRAME (contract CGL2009-11798) and SCARCE (program Consolider-Ingenio 2010, project CSD2009-00065) and the Generalitat Valenciana for the Geronimo Forteza grant (FPA/2012/006). The authors also thank the European Commission (Directorate-General for Research & Innovation) for funding the project DROUGHT-R&SPI (program FP7-ENV-2011, project 282769) and the Seventh Framework Programme of the European Commission for funding the project SIRIUS (FP7-SPACE-2010-1, project 262902). | en_EN |
dc.description.uri | https://riunet.upv.es/handle/10251/50699 | |
dc.language | Inglés | es_ES |
dc.publisher | IWA Publishing | es_ES |
dc.relation.ispartof | Journal of Hydroinformatics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Agricultural demands | es_ES |
dc.subject | AQUATOOL | |
dc.subject | Decision support system shell | |
dc.subject | Deficits | |
dc.subject | Drought | |
dc.subject | Genetic algorithms | |
dc.subject | NSGA-II | |
dc.subject | Operating rules | |
dc.subject | Optimization | |
dc.subject | SIMGES | |
dc.subject | Simulation | |
dc.subject | Water resources system | |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Evolutionary network flow models for obtaining operation rules in multi-reservoir water systems | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.2166/hydro.2013.151 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2009-11798/ES/Integración de metodologías multidisciplinares en la planificación hidrológica dentro del ámbito de la Directiva Marco Europea en política de aguas/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/282769/EU/Fostering European Drought Research and Science-Policy Interfacing/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2009-00065/ES/Evaluación y predicción de los efectos del cambio global en la cantidad y la calidad del agua en ríos ibéricos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/262902/EU/Sustainable Irrigation water management and River-basin governance: Implementing User-driven Services/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//FPA%2F2012%2F006/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Lerma Elvira, N.; Paredes Arquiola, J.; Molina González, JL.; Andreu Álvarez, J. (2014). Evolutionary network flow models for obtaining operation rules in multi-reservoir water systems. Journal of Hydroinformatics. 16(1):33-49. https://doi.org/10.2166/hydro.2013.151 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.2166/hydro.2013.151 | es_ES |
dc.description.upvformatpinicio | 33 | es_ES |
dc.description.upvformatpfin | 49 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 254521 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Comisión Interministerial de Ciencia y Tecnología | es_ES |