- -

BFF: A tool for eliciting tie strength and user communities in social networking services

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

BFF: A tool for eliciting tie strength and user communities in social networking services

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López Fogués, Ricard es_ES
dc.contributor.author Such Aparicio, José Miguel es_ES
dc.contributor.author Espinosa Minguet, Agustín Rafael es_ES
dc.contributor.author García-Fornes, A es_ES
dc.date.accessioned 2015-05-26T10:17:29Z
dc.date.available 2015-05-26T10:17:29Z
dc.date.issued 2014-04
dc.identifier.issn 1387-3326
dc.identifier.uri http://hdl.handle.net/10251/50752
dc.description The final publication is available at Springer via http://dx.doi.org/ 10.1007/s10796-013-9453-6 es_ES
dc.description.abstract The use of social networking services (SNSs) such as Facebook has explosively grown in the last few years. Users see these SNSs as useful tools to find friends and interact with them. Moreover, SNSs allow their users to share photos, videos, and express their thoughts and feelings. However, users are usually concerned about their privacy when using SNSs. This is because the public image of a subject can be affected by photos or comments posted on a social network. In this way, recent studies demonstrate that users are demanding better mechanisms to protect their privacy. An appropriate approximation to solve this could be a privacy assistant software agent that automatically suggests a privacy policy for any item to be shared on a SNS. The first step for developing such an agent is to be able to elicit meaningful information that can lead to accurate privacy policy predictions. In particular, the information needed is user communities and the strength of users' relationships, which, as suggested by recent empirical evidence, are the most important factors that drive disclosure in SNSs. Given the number of friends that users can have and the number of communities they may be involved on, it is infeasible that users are able to provide this information without the whole eliciting process becoming confusing and time consuming. In this work, we present a tool called Best Friend Forever (BFF) that automatically classifies the friends of a user in communities and assigns a value to the strength of the relationship ties to each one. We also present an experimental evaluation involving 38 subjects that showed that BFF can significantly alleviate the burden of eliciting communities and relationship strength. es_ES
dc.description.sponsorship This work has been partially supported by CONSOLIDER-INGENIO 2010 under grant CSD2007-00022, and TIN 2008-04446 and PROMETEO II/2013/019 projects. This article has been developed as a result of a mobility stay funded by the Erasmus Mundus Programme of the European Comission under the Transatlantic Partnership for Excellence in Engineering - TEE Project. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Information Systems Frontiers es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Information retrieval es_ES
dc.subject Social network es_ES
dc.subject Social media es_ES
dc.subject Privacy es_ES
dc.subject Tie strength es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title BFF: A tool for eliciting tie strength and user communities in social networking services es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10796-013-9453-6
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00022/ES/Agreement Technologies/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F019/ES/HUMBACE: HUMAN-LIKE COMPUTATIONAL MODELS FOR AGENT-BASED COMPUTATIONAL ECONOMICS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2008-04446/ES/UNA PLATAFORMA PARA SISTEMAS MULTIAGENTE ABIERTOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation López Fogués, R.; Such Aparicio, JM.; Espinosa Minguet, AR.; García-Fornes, A. (2014). BFF: A tool for eliciting tie strength and user communities in social networking services. Information Systems Frontiers. 16:225-237. https://doi.org/10.1007/s10796-013-9453-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007/s10796-013-9453-6 es_ES
dc.description.upvformatpinicio 225 es_ES
dc.description.upvformatpfin 237 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.relation.senia 258051
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Erasmus+ es_ES
dc.description.references Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. es_ES
dc.description.references Boyd, D., & Hargittai, E. (2010). Facebook privacy settings: who cares? First Monday, 15(8). es_ES
dc.description.references Burt, R. (1995). Structural holes: the social structure of competition. Harvard University Pr. es_ES
dc.description.references Culotta, A., Bekkerman, R., McCallum, A. (2004). Extracting social networks and contact information from email and the web. es_ES
dc.description.references Ellison, N., Steinfield, C., Lampe, C. (2007). The benefits of facebook friends: social capital and college students use of online social network sites. Journal of Computer-Mediated Communication, 12(4), 1143–1168. es_ES
dc.description.references Fang, L., & LeFevre, K. (2010). Privacy wizards for social networking sites. In Proceedings of the 19th international conference on World wide web (pp. 351–360). ACM. es_ES
dc.description.references Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75–174. es_ES
dc.description.references Gilbert, E., & Karahalios, K. (2009). Predicting tie strength with social media. In Proceedings of the 27th international conference on human factors in computing systems (pp. 211–220). ACM. es_ES
dc.description.references Girvan, M., & Newman, M. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Science, 99(12), 7821. es_ES
dc.description.references Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 1360–1380. es_ES
dc.description.references Gross, R., & Acquisti, A. (2005). Information revelation and privacy in online social networks. In Proceedings of the 2005 ACM workshop on privacy in the electronic society (pp. 71–80). ACM. es_ES
dc.description.references Johnson, M., Egelman, S., Bellovin, S. (2012). Facebook and privacy: it’s complicated. In Proceedings of the eighth symposium on usable privacy and security (p. 9). ACM . es_ES
dc.description.references Kahanda, I., & Neville, J. (2009). Using transactional information to predict link strength in online social networks. In Proceedings of the third international conference on weblogs and social media (ICWSM). es_ES
dc.description.references Lancichinetti, A., & Fortunato, S. (2009). Community detection algorithms: a comparative analysis. Physical Review E, 80, 056–117. es_ES
dc.description.references Lancichinetti, A., Fortunato, S., Kertsz, J. (2009). Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 11(3), 033–015. es_ES
dc.description.references Lin, N., Ensel, W., Vaughn, J. (1981). Social resources and strength of ties: Structural factors in occupational status attainment. American Sociological Review, 393–405. es_ES
dc.description.references Lipford, H., Besmer, A., Watson, J. (2008). Understanding privacy settings in facebook with an audience view. In Proceedings of the 1st conference on usability, psychology, and security (pp. 1–8). Berkeley: USENIX Association. es_ES
dc.description.references Liu, G., Wang, Y., Orgun, M. (2010). Optimal social trust path selection in complex social networks. In Proceedings of the 24th AAAI conference on artificial intelligence (pp. 139–1398). AAAI. es_ES
dc.description.references Matsuo, Y., Mori, J., Hamasaki, M., Nishimura, T., Takeda, H., Hasida, K., Ishizuka, M. (2007). Polyphonet: an advanced social network extraction system from the web. Web Semantics: Science, Services and Agents on the World Wide Web, 5(4), 262–278. World Wide Web Conference 2006 Semantic Web Track. es_ES
dc.description.references Murukannaiah, P., & Singh, M. (2011). Platys social: relating shared places and private social circles. Internet Computing IEEE, 99, 1–1. es_ES
dc.description.references Quercia, D., Lambiotte, R., Kosinski, M., Stillwell, D., Crowcroft, J. (2012). The personality of popular facebook users. In Proceedings of the ACM 2012 conference on computer supported cooperative work (CSCW’12). es_ES
dc.description.references Rosvall, M., & Bergstrom, C. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4), 1118–1123. es_ES
dc.description.references Sharma, G., Qiang, Y., Wenjun, S., Qi, L. (2013). Communication in virtual world: Second life and business opportunities. Information Systems Frontiers, 15(4), 677–694. es_ES
dc.description.references Shen, K., Song, L., Yang, X., Zhang, W. (2010). A hierarchical diffusion algorithm for community detection in social networks. In 2010 international conference on cyber-enabled distributed computing and knowledge discovery (CyberC) (pp. 276–283). IEEE. es_ES
dc.description.references Sierra, C., & Debenham, J. (2007). The LOGIC negotiation model. In AAMAS ’07: proceedings of the 6th international joint conference on autonomous agents and multiagent systems (pp. 1–8). ACM. es_ES
dc.description.references Staddon, J., Huffaker, D., Brown, L., Sedley, A. (2012). Are privacy concerns a turn-off?: engagement and privacy in social networks. In Proceedings of the eighth symposium on usable privacy and security (p. 10). ACM. es_ES
dc.description.references Strater, K., & Lipford, H.R. (2008). Strategies and struggles with privacy in an online social networking community. In Proceedings of the 22nd British HCI group annual conference on people and computers: culture, creativity, interaction, BCS-HCI ’08 (Vol. 1, pp. 111–119). Swinton: British Computer Society. es_ES
dc.description.references Wellman, B., & Wortley, S. (1990). Different strokes from different folks: Community ties and social support. American Journal of Sociology, 558–588. es_ES
dc.description.references Wiese, J., Kelley, P., Cranor, L., Dabbish, L., Hong, J., Zimmerman, J. (2011). Are you close with me? are you nearby? investigating social groups, closeness, and willingness to share. In Proceedings of the 13th international conference on Ubiquitous computing (pp. 197–206). ACM. es_ES
dc.description.references Xiang, R., Neville, J., Rogati, M. (2010). Modeling relationship strength in online social networks. In Proceedings of the 19th international conference on World wide web (pp. 981–990). ACM. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem