Mostrar el registro sencillo del ítem
dc.contributor.author | Pulido Velázquez, David | es_ES |
dc.contributor.author | García-Arostegui, J.L. | es_ES |
dc.contributor.author | Molina González, José Luis | es_ES |
dc.contributor.author | Pulido-Velazquez, M. | es_ES |
dc.date.accessioned | 2015-05-26T12:56:28Z | |
dc.date.available | 2015-05-26T12:56:28Z | |
dc.date.issued | 2015-03-15 | |
dc.identifier.issn | 0885-6087 | |
dc.identifier.uri | http://hdl.handle.net/10251/50792 | |
dc.description.abstract | The projected impact of climate change on groundwater recharge is a challenge in hydrogeological research because substantial doubts still remain, particularly in arid and semi-arid zones. We present a methodology to generate future groundwater recharge scenarios using available information about regional climate change projections developed in European Projects. It involves an analysis of regional climate model (RCM) simulations and a proposal for ensemble models to assess the impacts of climate change. Future rainfall and temperature series are generated by modifying the mean and standard deviation of the historical series in accordance with estimates of their change provoked by climate change. Future recharge series will be obtained by simulating these new series within a continuous balance model of the aquifer. The proposed method is applied to the Serral-Salinas aquifer, located in a semi-arid zone of south-east Spain. The results show important differences depending on the RCM used. Differences are also observed between the series generated by imposing only the changes in means or also in standard deviations. An increase in rainfall variability, as expected under future scenarios, could increase recharge rates for a given mean rainfall because the number of extreme events increases. For some RCMs, the simulations predict total recharge increases over the historical values, even though climate change would produce a reduction in the mean rainfall and an increased mean temperature. A method based on a multi-objective analysis is proposed to provide ensemble predictions that give more value to the information obtained from the best calibrated models. The ensemble of predictions estimates a reduction in mean annual recharge of 14% for scenario A2 and 58% for scenario A1B. Lower values of future recharge are obtained if only the change in the mean is imposed. | es_ES |
dc.description.sponsorship | This work has been developed under the framework of the CGL-2009-13238-C02-01 and CGL2009-13238-C02-02 research projects, financed by the Plan Nacional I+D+I 2008-2011 (Ministry of Science and Innovation, Spain). The study was also partially supported by the European Community 7th Framework Project GENESIS (226536) on groundwater systems. We also thank the PRUDENCE and ENSEMBLES Projects, as some public data of this project have been applied. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Hydrological Processes | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Climate change | es_ES |
dc.subject | Groundwater resources | es_ES |
dc.subject | Groundwater recharge | es_ES |
dc.subject | Future scenarios | es_ES |
dc.subject | Semi-arid regions | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate? | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/hyp.10191 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/226536/EU/Groundwater and dependent Ecosystems: NEw Scientific basIS on climate change and land-use impacts for the update of the EU Groundwater Directive/ | en_EN |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Pulido Velázquez, D.; García-Arostegui, J.; Molina González, JL.; Pulido-Velazquez, M. (2015). Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate?. Hydrological Processes. 29(6):828-844. https://doi.org/10.1002/hyp.10191 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/hyp.10191 | es_ES |
dc.description.upvformatpinicio | 828 | es_ES |
dc.description.upvformatpfin | 844 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 275865 | |
dc.description.references | AEMet 2009 Generación de escenarios regionalizados de cambio climático para España www.aemet.es/documentos/es/elclima/cambio_climat/escenarios/Informe_Escenarios.pdf | es_ES |
dc.description.references | Aguilera, H., & Murillo, J. M. (2008). The effect of possible climate change on natural groundwater recharge based on a simple model: a study of four karstic aquifers in SE Spain. Environmental Geology, 57(5), 963-974. doi:10.1007/s00254-008-1381-2 | es_ES |
dc.description.references | Bell, V. A., Kay, A. L., Jones, R. G., & Moore, R. J. (2007). Development of a high resolution grid-based river flow model for use with regional climate model output. Hydrology and Earth System Sciences, 11(1), 532-549. doi:10.5194/hess-11-532-2007 | es_ES |
dc.description.references | Bouraoui, F., Vachaud, G., Li, L. Z. X., Le Treut, H., & Chen, T. (1999). Evaluation of the impact of climate changes on water storage and groundwater recharge at the watershed scale. Climate Dynamics, 15(2), 153-161. doi:10.1007/s003820050274 | es_ES |
dc.description.references | Candela, L., von Igel, W., Javier Elorza, F., & Aronica, G. (2009). Impact assessment of combined climate and management scenarios on groundwater resources and associated wetland (Majorca, Spain). Journal of Hydrology, 376(3-4), 510-527. doi:10.1016/j.jhydrol.2009.07.057 | es_ES |
dc.description.references | Candela, L., Tamoh, K., Olivares, G., & Gomez, M. (2012). Modelling impacts of climate change on water resources in ungauged and data-scarce watersheds. Application to the Siurana catchment (NE Spain). Science of The Total Environment, 440, 253-260. doi:10.1016/j.scitotenv.2012.06.062 | es_ES |
dc.description.references | Cayan, D. R., Maurer, E. P., Dettinger, M. D., Tyree, M., & Hayhoe, K. (2008). Climate change scenarios for the California region. Climatic Change, 87(S1), 21-42. doi:10.1007/s10584-007-9377-6 | es_ES |
dc.description.references | Christensen, N. S., & Lettenmaier, D. P. (2007). A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrology and Earth System Sciences, 11(4), 1417-1434. doi:10.5194/hess-11-1417-2007 | es_ES |
dc.description.references | Döll, P. (2009). Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environmental Research Letters, 4(3), 035006. doi:10.1088/1748-9326/4/3/035006 | es_ES |
dc.description.references | Dragoni, W., & Sukhija, B. S. (2008). Climate change and groundwater: a short review. Geological Society, London, Special Publications, 288(1), 1-12. doi:10.1144/sp288.1 | es_ES |
dc.description.references | ENSEMBLES PROJECT 2009 European Commission's 6th Framework Integrated Project from 2004-2009 (through the contract GOCE-CT-2003-505539) under the Thematic Sub-Priority ‘Global Change and Ecosystems’ http://ensembles-eu.metoffice.com/ | es_ES |
dc.description.references | FAO 2008 Climate change water and flood security | es_ES |
dc.description.references | Fowler, H. J., Blenkinsop, S., & Tebaldi, C. (2007). Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 27(12), 1547-1578. doi:10.1002/joc.1556 | es_ES |
dc.description.references | Fowler, H. J., Kilsby, C. G., & Stunell, J. (2007). Modelling the impacts of projected future climate change on water resources in north-west England. Hydrology and Earth System Sciences, 11(3), 1115-1126. doi:10.5194/hess-11-1115-2007 | es_ES |
dc.description.references | Green, T. R., Bates, B. C., Charles, S. P., & Fleming, P. M. (2007). Physically Based Simulation of Potential Effects of Carbon Dioxide–Altered Climates on Groundwater Recharge. Vadose Zone Journal, 6(3), 597. doi:10.2136/vzj2006.0099 | es_ES |
dc.description.references | Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., … Aureli, A. (2011). Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3-4), 532-560. doi:10.1016/j.jhydrol.2011.05.002 | es_ES |
dc.description.references | Gurdak, J. J., & Roe, C. D. (2010). Review: Recharge rates and chemistry beneath playas of the High Plains aquifer, USA. Hydrogeology Journal, 18(8), 1747-1772. doi:10.1007/s10040-010-0672-3 | es_ES |
dc.description.references | Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., & New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research, 113(D20). doi:10.1029/2008jd010201 | es_ES |
dc.description.references | Hernandez-Barrios L 2007 Efectos del cambio climático en los sistemas complejos de recursos hídricos. Aplicación a la cuenca del Júcar. (Effects of climate change on complex water resources systems. Application to the Jucar River Basin) | es_ES |
dc.description.references | Herrera-Pantoja, M., & Hiscock, K. M. (2007). The effects of climate change on potential groundwater recharge in Great Britain. Hydrological Processes, 22(1), 73-86. doi:10.1002/hyp.6620 | es_ES |
dc.description.references | Iglesias, A., Garrote, L., Flores, F., & Moneo, M. (2006). Challenges to Manage the Risk of Water Scarcity and Climate Change in the Mediterranean. Water Resources Management, 21(5), 775-788. doi:10.1007/s11269-006-9111-6 | es_ES |
dc.description.references | IPCC 2007 Four assessment report: impacts, adaptation and vulnerability | es_ES |
dc.description.references | Jiménez-Martínez, J., Candela, L., Molinero, J., & Tamoh, K. (2010). Groundwater recharge in irrigated semi-arid areas: quantitative hydrological modelling and sensitivity analysis. Hydrogeology Journal, 18(8), 1811-1824. doi:10.1007/s10040-010-0658-1 | es_ES |
dc.description.references | Jyrkama, M. I., & Sykes, J. F. (2007). The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). Journal of Hydrology, 338(3-4), 237-250. doi:10.1016/j.jhydrol.2007.02.036 | es_ES |
dc.description.references | Kovalevskii, V. S. (2007). Effect of climate changes on groundwater. Water Resources, 34(2), 140-152. doi:10.1134/s0097807807020042 | es_ES |
dc.description.references | Lautenbach, S., Jürgen Berlekamp, Graf, N., Seppelt, R., & Matthies, M. (2009). Scenario analysis and management options for sustainable river basin management: Application of the Elbe DSS. Environmental Modelling & Software, 24(1), 26-43. doi:10.1016/j.envsoft.2008.05.001 | es_ES |
dc.description.references | Lopez, A., Fung, F., New, M., Watts, G., Weston, A., & Wilby, R. L. (2009). From climate model ensembles to climate change impacts and adaptation: A case study of water resource management in the southwest of England. Water Resources Research, 45(8). doi:10.1029/2008wr007499 | es_ES |
dc.description.references | Merritt, W. S., Alila, Y., Barton, M., Taylor, B., Cohen, S., & Neilsen, D. (2006). Hydrologic response to scenarios of climate change in sub watersheds of the Okanagan basin, British Columbia. Journal of Hydrology, 326(1-4), 79-108. doi:10.1016/j.jhydrol.2005.10.025 | es_ES |
dc.description.references | Molina JL García Aróstegui JL 2007 Identificación preliminar de impactos del uso intensivo del agua subterránea en el sureste español: Acuífero Serral-Salinas (Murcia-Alicante) | es_ES |
dc.description.references | Molina, J. L., García Aróstegui, J. L., Benavente, J., Varela, C., de la Hera, A., & López Geta, J. A. (2009). Aquifers Overexploitation in SE Spain: A Proposal for the Integrated Analysis of Water Management. Water Resources Management, 23(13), 2737-2760. doi:10.1007/s11269-009-9406-5 | es_ES |
dc.description.references | Molina, J.-L., García-Aróstegui, J. L., Bromley, J., & Benavente, J. (2011). Integrated Assessment of the European WFD Implementation in Extremely Overexploited Aquifers Through Participatory Modelling. Water Resources Management, 25(13), 3343-3370. doi:10.1007/s11269-011-9859-1 | es_ES |
dc.description.references | Molina, J.-L., Pulido-Velázquez, D., García-Aróstegui, J. L., & Pulido-Velázquez, M. (2013). Dynamic Bayesian Networks as a Decision Support tool for assessing Climate Change impacts on highly stressed groundwater systems. Journal of Hydrology, 479, 113-129. doi:10.1016/j.jhydrol.2012.11.038 | es_ES |
dc.description.references | PRUDENCE PROJECT 2004 Prediction of regional scenarios and uncertainties for defining European climate change risks and effects http://prudence.dmi.dk/ | es_ES |
dc.description.references | Pulido-Velazquez, D., Garrote, L., Andreu, J., Martin-Carrasco, F.-J., & Iglesias, A. (2011). A methodology to diagnose the effect of climate change and to identify adaptive strategies to reduce its impacts in conjunctive-use systems at basin scale. Journal of Hydrology, 405(1-2), 110-122. doi:10.1016/j.jhydrol.2011.05.014 | es_ES |
dc.description.references | Romero, R., Guijarro, J. A., Ramis, C., & Alonso, S. (1998). A 30-year (1964–1993) daily rainfall data base for the Spanish Mediterranean regions: first exploratory study. International Journal of Climatology, 18(5), 541-560. doi:10.1002/(sici)1097-0088(199804)18:5<541::aid-joc270>3.0.co;2-n | es_ES |
dc.description.references | Samper J Huguet Ll Ares J García Vera MA 1999 Manual del usuario del programa VISUAL BALAN v.1.0: Código interactivo para la realización de balances hidrológicos y la estimación de la recarga | es_ES |
dc.description.references | Samper J Huguet Ll Ares J García-Vera MA 2005 User's guide VisualBALAN v.2.0: código interactivo para la realización de balances hidrológicos y la estimación de la recarga [Visual-BALAN v.2.0: interactive code to establish water balance and aquifer recharge] | es_ES |
dc.description.references | Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., … Treidel, H. (2012). Ground water and climate change. Nature Climate Change, 3(4), 322-329. doi:10.1038/nclimate1744 | es_ES |
dc.description.references | Vaccaro, J. J. (1992). Sensitivity of groundwater recharge estimates to climate variability and change, Columbia Plateau, Washington. Journal of Geophysical Research, 97(D3), 2821. doi:10.1029/91jd01788 | es_ES |
dc.description.references | Werner, A. D., Zhang, Q., Xue, L., Smerdon, B. D., Li, X., Zhu, X., … Li, L. (2012). An Initial Inventory and Indexation of Groundwater Mega-Depletion Cases. Water Resources Management, 27(2), 507-533. doi:10.1007/s11269-012-0199-6 | es_ES |
dc.description.references | WRF (Water Resources Foundation) 2009 Climate change impacts http://www.theclimatechangeclearinghouse.org/ClimateChangeImpacts/ChangesStormIntensityFrequency/Pages/default.aspx | es_ES |