- -

Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pulido Velázquez, David es_ES
dc.contributor.author García-Arostegui, J.L. es_ES
dc.contributor.author Molina González, José Luis es_ES
dc.contributor.author Pulido-Velazquez, M. es_ES
dc.date.accessioned 2015-05-26T12:56:28Z
dc.date.available 2015-05-26T12:56:28Z
dc.date.issued 2015-03-15
dc.identifier.issn 0885-6087
dc.identifier.uri http://hdl.handle.net/10251/50792
dc.description.abstract The projected impact of climate change on groundwater recharge is a challenge in hydrogeological research because substantial doubts still remain, particularly in arid and semi-arid zones. We present a methodology to generate future groundwater recharge scenarios using available information about regional climate change projections developed in European Projects. It involves an analysis of regional climate model (RCM) simulations and a proposal for ensemble models to assess the impacts of climate change. Future rainfall and temperature series are generated by modifying the mean and standard deviation of the historical series in accordance with estimates of their change provoked by climate change. Future recharge series will be obtained by simulating these new series within a continuous balance model of the aquifer. The proposed method is applied to the Serral-Salinas aquifer, located in a semi-arid zone of south-east Spain. The results show important differences depending on the RCM used. Differences are also observed between the series generated by imposing only the changes in means or also in standard deviations. An increase in rainfall variability, as expected under future scenarios, could increase recharge rates for a given mean rainfall because the number of extreme events increases. For some RCMs, the simulations predict total recharge increases over the historical values, even though climate change would produce a reduction in the mean rainfall and an increased mean temperature. A method based on a multi-objective analysis is proposed to provide ensemble predictions that give more value to the information obtained from the best calibrated models. The ensemble of predictions estimates a reduction in mean annual recharge of 14% for scenario A2 and 58% for scenario A1B. Lower values of future recharge are obtained if only the change in the mean is imposed. es_ES
dc.description.sponsorship This work has been developed under the framework of the CGL-2009-13238-C02-01 and CGL2009-13238-C02-02 research projects, financed by the Plan Nacional I+D+I 2008-2011 (Ministry of Science and Innovation, Spain). The study was also partially supported by the European Community 7th Framework Project GENESIS (226536) on groundwater systems. We also thank the PRUDENCE and ENSEMBLES Projects, as some public data of this project have been applied. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Hydrological Processes es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Climate change es_ES
dc.subject Groundwater resources es_ES
dc.subject Groundwater recharge es_ES
dc.subject Future scenarios es_ES
dc.subject Semi-arid regions es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/hyp.10191
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/226536/EU/Groundwater and dependent Ecosystems: NEw Scientific basIS on climate change and land-use impacts for the update of the EU Groundwater Directive/ en_EN
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Pulido Velázquez, D.; García-Arostegui, J.; Molina González, JL.; Pulido-Velazquez, M. (2015). Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate?. Hydrological Processes. 29(6):828-844. https://doi.org/10.1002/hyp.10191 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/hyp.10191 es_ES
dc.description.upvformatpinicio 828 es_ES
dc.description.upvformatpfin 844 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 275865
dc.description.references AEMet 2009 Generación de escenarios regionalizados de cambio climático para España www.aemet.es/documentos/es/elclima/cambio_climat/escenarios/Informe_Escenarios.pdf es_ES
dc.description.references Aguilera, H., & Murillo, J. M. (2008). The effect of possible climate change on natural groundwater recharge based on a simple model: a study of four karstic aquifers in SE Spain. Environmental Geology, 57(5), 963-974. doi:10.1007/s00254-008-1381-2 es_ES
dc.description.references Bell, V. A., Kay, A. L., Jones, R. G., & Moore, R. J. (2007). Development of a high resolution grid-based river flow model for use with regional climate model output. Hydrology and Earth System Sciences, 11(1), 532-549. doi:10.5194/hess-11-532-2007 es_ES
dc.description.references Bouraoui, F., Vachaud, G., Li, L. Z. X., Le Treut, H., & Chen, T. (1999). Evaluation of the impact of climate changes on water storage and groundwater recharge at the watershed scale. Climate Dynamics, 15(2), 153-161. doi:10.1007/s003820050274 es_ES
dc.description.references Candela, L., von Igel, W., Javier Elorza, F., & Aronica, G. (2009). Impact assessment of combined climate and management scenarios on groundwater resources and associated wetland (Majorca, Spain). Journal of Hydrology, 376(3-4), 510-527. doi:10.1016/j.jhydrol.2009.07.057 es_ES
dc.description.references Candela, L., Tamoh, K., Olivares, G., & Gomez, M. (2012). Modelling impacts of climate change on water resources in ungauged and data-scarce watersheds. Application to the Siurana catchment (NE Spain). Science of The Total Environment, 440, 253-260. doi:10.1016/j.scitotenv.2012.06.062 es_ES
dc.description.references Cayan, D. R., Maurer, E. P., Dettinger, M. D., Tyree, M., & Hayhoe, K. (2008). Climate change scenarios for the California region. Climatic Change, 87(S1), 21-42. doi:10.1007/s10584-007-9377-6 es_ES
dc.description.references Christensen, N. S., & Lettenmaier, D. P. (2007). A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrology and Earth System Sciences, 11(4), 1417-1434. doi:10.5194/hess-11-1417-2007 es_ES
dc.description.references Döll, P. (2009). Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environmental Research Letters, 4(3), 035006. doi:10.1088/1748-9326/4/3/035006 es_ES
dc.description.references Dragoni, W., & Sukhija, B. S. (2008). Climate change and groundwater: a short review. Geological Society, London, Special Publications, 288(1), 1-12. doi:10.1144/sp288.1 es_ES
dc.description.references ENSEMBLES PROJECT 2009 European Commission's 6th Framework Integrated Project from 2004-2009 (through the contract GOCE-CT-2003-505539) under the Thematic Sub-Priority ‘Global Change and Ecosystems’ http://ensembles-eu.metoffice.com/ es_ES
dc.description.references FAO 2008 Climate change water and flood security es_ES
dc.description.references Fowler, H. J., Blenkinsop, S., & Tebaldi, C. (2007). Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 27(12), 1547-1578. doi:10.1002/joc.1556 es_ES
dc.description.references Fowler, H. J., Kilsby, C. G., & Stunell, J. (2007). Modelling the impacts of projected future climate change on water resources in north-west England. Hydrology and Earth System Sciences, 11(3), 1115-1126. doi:10.5194/hess-11-1115-2007 es_ES
dc.description.references Green, T. R., Bates, B. C., Charles, S. P., & Fleming, P. M. (2007). Physically Based Simulation of Potential Effects of Carbon Dioxide–Altered Climates on Groundwater Recharge. Vadose Zone Journal, 6(3), 597. doi:10.2136/vzj2006.0099 es_ES
dc.description.references Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., … Aureli, A. (2011). Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3-4), 532-560. doi:10.1016/j.jhydrol.2011.05.002 es_ES
dc.description.references Gurdak, J. J., & Roe, C. D. (2010). Review: Recharge rates and chemistry beneath playas of the High Plains aquifer, USA. Hydrogeology Journal, 18(8), 1747-1772. doi:10.1007/s10040-010-0672-3 es_ES
dc.description.references Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., & New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research, 113(D20). doi:10.1029/2008jd010201 es_ES
dc.description.references Hernandez-Barrios L 2007 Efectos del cambio climático en los sistemas complejos de recursos hídricos. Aplicación a la cuenca del Júcar. (Effects of climate change on complex water resources systems. Application to the Jucar River Basin) es_ES
dc.description.references Herrera-Pantoja, M., & Hiscock, K. M. (2007). The effects of climate change on potential groundwater recharge in Great Britain. Hydrological Processes, 22(1), 73-86. doi:10.1002/hyp.6620 es_ES
dc.description.references Iglesias, A., Garrote, L., Flores, F., & Moneo, M. (2006). Challenges to Manage the Risk of Water Scarcity and Climate Change in the Mediterranean. Water Resources Management, 21(5), 775-788. doi:10.1007/s11269-006-9111-6 es_ES
dc.description.references IPCC 2007 Four assessment report: impacts, adaptation and vulnerability es_ES
dc.description.references Jiménez-Martínez, J., Candela, L., Molinero, J., & Tamoh, K. (2010). Groundwater recharge in irrigated semi-arid areas: quantitative hydrological modelling and sensitivity analysis. Hydrogeology Journal, 18(8), 1811-1824. doi:10.1007/s10040-010-0658-1 es_ES
dc.description.references Jyrkama, M. I., & Sykes, J. F. (2007). The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). Journal of Hydrology, 338(3-4), 237-250. doi:10.1016/j.jhydrol.2007.02.036 es_ES
dc.description.references Kovalevskii, V. S. (2007). Effect of climate changes on groundwater. Water Resources, 34(2), 140-152. doi:10.1134/s0097807807020042 es_ES
dc.description.references Lautenbach, S., Jürgen Berlekamp, Graf, N., Seppelt, R., & Matthies, M. (2009). Scenario analysis and management options for sustainable river basin management: Application of the Elbe DSS. Environmental Modelling & Software, 24(1), 26-43. doi:10.1016/j.envsoft.2008.05.001 es_ES
dc.description.references Lopez, A., Fung, F., New, M., Watts, G., Weston, A., & Wilby, R. L. (2009). From climate model ensembles to climate change impacts and adaptation: A case study of water resource management in the southwest of England. Water Resources Research, 45(8). doi:10.1029/2008wr007499 es_ES
dc.description.references Merritt, W. S., Alila, Y., Barton, M., Taylor, B., Cohen, S., & Neilsen, D. (2006). Hydrologic response to scenarios of climate change in sub watersheds of the Okanagan basin, British Columbia. Journal of Hydrology, 326(1-4), 79-108. doi:10.1016/j.jhydrol.2005.10.025 es_ES
dc.description.references Molina JL García Aróstegui JL 2007 Identificación preliminar de impactos del uso intensivo del agua subterránea en el sureste español: Acuífero Serral-Salinas (Murcia-Alicante) es_ES
dc.description.references Molina, J. L., García Aróstegui, J. L., Benavente, J., Varela, C., de la Hera, A., & López Geta, J. A. (2009). Aquifers Overexploitation in SE Spain: A Proposal for the Integrated Analysis of Water Management. Water Resources Management, 23(13), 2737-2760. doi:10.1007/s11269-009-9406-5 es_ES
dc.description.references Molina, J.-L., García-Aróstegui, J. L., Bromley, J., & Benavente, J. (2011). Integrated Assessment of the European WFD Implementation in Extremely Overexploited Aquifers Through Participatory Modelling. Water Resources Management, 25(13), 3343-3370. doi:10.1007/s11269-011-9859-1 es_ES
dc.description.references Molina, J.-L., Pulido-Velázquez, D., García-Aróstegui, J. L., & Pulido-Velázquez, M. (2013). Dynamic Bayesian Networks as a Decision Support tool for assessing Climate Change impacts on highly stressed groundwater systems. Journal of Hydrology, 479, 113-129. doi:10.1016/j.jhydrol.2012.11.038 es_ES
dc.description.references PRUDENCE PROJECT 2004 Prediction of regional scenarios and uncertainties for defining European climate change risks and effects http://prudence.dmi.dk/ es_ES
dc.description.references Pulido-Velazquez, D., Garrote, L., Andreu, J., Martin-Carrasco, F.-J., & Iglesias, A. (2011). A methodology to diagnose the effect of climate change and to identify adaptive strategies to reduce its impacts in conjunctive-use systems at basin scale. Journal of Hydrology, 405(1-2), 110-122. doi:10.1016/j.jhydrol.2011.05.014 es_ES
dc.description.references Romero, R., Guijarro, J. A., Ramis, C., & Alonso, S. (1998). A 30-year (1964–1993) daily rainfall data base for the Spanish Mediterranean regions: first exploratory study. International Journal of Climatology, 18(5), 541-560. doi:10.1002/(sici)1097-0088(199804)18:5<541::aid-joc270>3.0.co;2-n es_ES
dc.description.references Samper J Huguet Ll Ares J García Vera MA 1999 Manual del usuario del programa VISUAL BALAN v.1.0: Código interactivo para la realización de balances hidrológicos y la estimación de la recarga es_ES
dc.description.references Samper J Huguet Ll Ares J García-Vera MA 2005 User's guide VisualBALAN v.2.0: código interactivo para la realización de balances hidrológicos y la estimación de la recarga [Visual-BALAN v.2.0: interactive code to establish water balance and aquifer recharge] es_ES
dc.description.references Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., … Treidel, H. (2012). Ground water and climate change. Nature Climate Change, 3(4), 322-329. doi:10.1038/nclimate1744 es_ES
dc.description.references Vaccaro, J. J. (1992). Sensitivity of groundwater recharge estimates to climate variability and change, Columbia Plateau, Washington. Journal of Geophysical Research, 97(D3), 2821. doi:10.1029/91jd01788 es_ES
dc.description.references Werner, A. D., Zhang, Q., Xue, L., Smerdon, B. D., Li, X., Zhu, X., … Li, L. (2012). An Initial Inventory and Indexation of Groundwater Mega-Depletion Cases. Water Resources Management, 27(2), 507-533. doi:10.1007/s11269-012-0199-6 es_ES
dc.description.references WRF (Water Resources Foundation) 2009 Climate change impacts http://www.theclimatechangeclearinghouse.org/ClimateChangeImpacts/ChangesStormIntensityFrequency/Pages/default.aspx es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem