- -

Modelling the impact of climate change on sediment yield in a highly erodible Mediterranean catchment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelling the impact of climate change on sediment yield in a highly erodible Mediterranean catchment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bussi, G. es_ES
dc.contributor.author Francés, F. es_ES
dc.contributor.author Horel, E. es_ES
dc.contributor.author López Tarazón, J. A. es_ES
dc.contributor.author Batalla, R. es_ES
dc.date.accessioned 2015-05-27T08:12:12Z
dc.date.available 2015-05-27T08:12:12Z
dc.date.issued 2014
dc.identifier.issn 1439-0108
dc.identifier.uri http://hdl.handle.net/10251/50834
dc.description.abstract The assessment of climate change impacts on the sediment cycle is currently a primary concern for environmental policy analysts in Mediterranean areas. Nevertheless, quantitative assessment of climate change impacts is still a complex task. The aim of this study was to implement a sediment model by taking advantage of sediment proxy information provided by reservoir bottom deposits and to use it for climate change assessment in a Mediterranean catchment. The sediment model was utilised in a catchment that drains into a large reservoir. The depositional history of the reservoir was reconstructed and used for sediment sub-model implementation. The model results were compared with gauged suspended sediment data in order to verify model robustness. Then, the model was coupled with future precipitation and temperature scenarios obtained from climate models. Climatological model outputs for two emission scenarios (A2 and B2) were simulated and the results compared with a reference scenario. Model results showed a general decrease in soil moisture and water discharge. Large floods, which are responsible for the majority of sediment mobilisation, also showed a general decrease. Sediment yield showed a clear reduction under the A2 scenario but increased under the B2 scenario. The computed specific sediment yield for the control period was 6.33 Mg ha(-1) year(-1), while for the A2 and B2 scenarios, it was 3.62 and 7.04 Mg ha(-1) year(-1), respectively. Furthermore, sediment transport showed an increase in its time compression, i.e. a stronger dependence of total sediment yield from the largest event contributions. This study shows a methodology for implementing a distributed sediment model by exploiting reservoir sedimentation volumes. This methodology can be applied to a wide range of catchments, given the high availability of reservoir sedimentation data. Moreover, this study showed how such a model can be used in the framework of a climate change study, providing a measure of the impact of climate change on soil erosion and sediment yields. es_ES
dc.description.sponsorship This study was funded by the Spanish Ministry of Economy and Competitiveness through the research projects SCARCE-CONSOLIDER (ref. CSD2009-00065) and ECOTETIS (ref. CGL2011-28776-C02-01). Suspended sediment records of the Isabena river and bathymetrical surveys were carried out within the framework of the project "Sediment export from large semi-arid catchments: measurements and modelling (SESAM), funded by the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). The authors wish to thank the EbroWater Authorities for permission to install the measuring equipment at the Capella gauging station and or providing hydrological data. Both observed and modelled precipitation and temperature data were provided by the Spanish Meteorological Agency (AEMET). Some of the reservoir bathymetric survey reports were provided by Rafael Cobo Rayan (CEH-CEDEX, National Center for Hydrological Studies). en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Soils and Sediments es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Climate change es_ES
dc.subject Esera River catchment es_ES
dc.subject Reservoir sedimentation es_ES
dc.subject Sediment modelling es_ES
dc.subject TETIS es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Modelling the impact of climate change on sediment yield in a highly erodible Mediterranean catchment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11368-014-0956-7
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00065/ES/Evaluación y predicción de los efectos del cambio global en la cantidad y la calidad del agua en ríos ibéricos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2011-28776-C02-01/ES/Modelling the interactions between sediment, vegetation and water quality in semiarid mediterranean forests at plot and basin scales/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Bussi, G.; Francés, F.; Horel, E.; López Tarazón, JA.; Batalla, R. (2014). Modelling the impact of climate change on sediment yield in a highly erodible Mediterranean catchment. Journal of Soils and Sediments. 14(12):1921-1937. doi:10.1007/s11368-014-0956-7 es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 1921 es_ES
dc.description.upvformatpfin 1937 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 287170
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.description.references Alatorre LC, Beguería S, García-Ruiz JM (2010) Regional scale modeling of hillslope sediment delivery: a case study in the Barasona Reservoir watershed (Spain) using WATEM/SEDEM. J Hydrol 391:109–123 es_ES
dc.description.references Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R, Michaelides S, Manes A (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29(11):1536 es_ES
dc.description.references Andrés-Doménech I, Múnera JC, Francés F, Marco JB (2010) Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment. Hydrol Earth Syst Sci 14:2057–2072 es_ES
dc.description.references Avendaño Salas C, Cobo Rayán R (1998) Seguimiento de los sólidos en suspensión durante el vaciado del embalse de Joaquín Costa. Limnética 14:113–120 es_ES
dc.description.references Avendaño Salas С, Sanz Montero ME, Cobo Rayán R, Gómez Montaña JL (1997) Sediment yield at Spanish reservoirs and its relationship with the drainage basin area. In: Proceedings of the 19th Symposium of Large Dams, Florence. ICOLD (International Committee on Large Dams), pp 863–874 es_ES
dc.description.references Baade J, Franz S, Reichel A (2012) Reservoir siltation and sediment yield in the Kruger National Park, South Africa: a first assessment. Land Degrad Dev 23:586–600 es_ES
dc.description.references Bangash RF, Passuello A, Sanchez-Canales M, Terrado M, López A, Elorza FJ, Ziv G, Acuña V, Schuhmacher M (2013) Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control. Sci Total Environ 458-460C:246–255 es_ES
dc.description.references Beguería S, López-Moreno JI, Lorente L, Seeger M, García-Ruiz JM (2003) Assessing the effect of climate oscillations and land-use changes on streamflow in the central Spanish Pyrenees. Ambio 32:283–286 es_ES
dc.description.references Blöschl G (2001) Scaling in hydrology. Hydrol Process 15:709–711 es_ES
dc.description.references Brune GM (1953) Trap efficiency of reservoirs. Trans AGU 34:407–418 es_ES
dc.description.references Bussi G, Rodríguez-Lloveras X, Francés F, Benito G, Sánchez-Moya Y, Sopeña A (2013) Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment. Hydrol Earth Syst Sci 17:3339–3354 es_ES
dc.description.references Bussi G, Francés F, Montoya JJ, Julien PY (2014), Distributed sediment yield modelling: importance of initial sediment conditions, Environ Model Softw 58:58–70 es_ES
dc.description.references Cerdà A (1998) Effect of climate on surface flow along a climatological gradient in Israel: a field rainfall simulation approach. J Arid Environ 38:145–159 es_ES
dc.description.references Cerdà A, Brazier R, Nearing M, de Vente J (2013) Scales and erosion. Catena 102:1–2 es_ES
dc.description.references Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Chang 81(S1):1–6 es_ES
dc.description.references Coulthard TJ, Ramirez J, Fowler HJ, Glenis V (2012) Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on drainage basin sediment yield. Hydrol Earth Syst Sci 16:4401–4416 es_ES
dc.description.references Cowpertwait P, Ocio D, Collazos G, de Cos O, Stocker C (2013) Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain. Hydrol Earth Syst Sci 17:479–494 es_ES
dc.description.references Cusack S, Slingo A, Edwards JM, Wild M (1998) The radiative impact of a simple aerosol climatology on the Hadley Centre atmospheric GCM. Quat J R Meteorol Soc 124:2517–2526 es_ES
dc.description.references De Vente J, Poesen J, Verstraeten G (2005) The application of semi-quantitative methods and reservoir sedimentation rates for the prediction of basin sediment yield in Spain. J Hydrol 305:63–86 es_ES
dc.description.references De Vente J, Poesen J, Verstraeten G, Van Rompaey A, Govers G (2008) Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain. Glob Planet Chang 60:393–415 es_ES
dc.description.references Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Chang 57:16–26 es_ES
dc.description.references Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10:249–266 es_ES
dc.description.references Duck R, McManus J (1993) Sedimentation in natural and artificial impoundments: an indicator of evolving climate land use and dynamic conditions. In: McManus J, Duck R (eds) Geomorphology and sedimentology of lakes and reservoirs. Wiley and Sons, Chichester es_ES
dc.description.references Engelund F, Hansen E (1967) A monograph on sediment transport in alluvial streams. Monogr Denmark Tech Univ Hydraul Lab, Teknisk Forlag, Copenhagen es_ES
dc.description.references ESDB2 (2004) The European Soil Database distribution version 2.0. European Commission and the European Soil Bureau Network Office for Official Publications of the European Communities. Luxembourg es_ES
dc.description.references European Environment Agency (2007) CLC2006 technical guidelines EEA technical report no. 17/2007. European Environment Agency, Copenhagen, Denmark es_ES
dc.description.references Francés F, Vélez JI, Vélez JJ (2007) Split-parameter structure for the automatic calibration of distributed hydrological models. J Hydrol 332:226–240 es_ES
dc.description.references Foster IDL, Rowntree KM, Boardman J, Mighall TM (2012) Changing sediment yield and sediment dynamics in the Karoo uplands, South Africa; post-European impacts. Land Degrad Dev 23:508–522 es_ES
dc.description.references González-Hidalgo JC, Batalla RJ, Cerdà A, de Luis M (2010) Contribution of the largest events to suspended sediment transport across the USA. Land Degrad Dev 21:83–91 es_ES
dc.description.references González-Hidalgo JC, Batalla RJ, Cerdà A (2013) Catchment size and contribution of the largest daily events to suspended sediment load on a continental scale. Catena 102:40–45 es_ES
dc.description.references Herrera S, Gutiérrez JM, Ancell R, Pons MR, Frías MD, Fernández J (2010) Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol 32:74–85 es_ES
dc.description.references Haregeweyn N, Poesen J, Verstraeten G, Govers G, de Vente J, Nyssen J, Deckers J, Moeyersons J (2013) Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM) in northern Ethiopia. Land Degrad Dev 24:188–204 es_ES
dc.description.references IGME (1994) Mapa geológico de la península ibérica Baleares y Canarias. Instituto Tecnológico Geominero de España, Madrid es_ES
dc.description.references Johnson B, Julien P, Molnar DK, Watson CC (2000) The two-dimensional upland erosion model CASC2D-SED. J Am Water Resour Assoc 36:31–42 es_ES
dc.description.references Jolly JP (1982) A proposed method for accurately calculating sediment yields from reservoir deposition volumes. In: Proceedings of the Exeter Symposium "Recent developments in the explanation and prediction of erosion and sediment yield". Ed. D. E. Walling.  IAHS Publ No 37, IAHS Press, Wallingford, UK es_ES
dc.description.references Julien P (1995) Erosion and sedimentation. Cambridge University Press, Cambridge es_ES
dc.description.references Kilinc M, Richardson EV (1973) Mechanics of soil erosion from overland flow generated by simulated rainfall. Colorado State University Hydrology Papers, Colorado es_ES
dc.description.references Lane EW, Koelzer VA (1943) Density of sediments deposited in reservoirs. Rep No 9 of a Study of Methods Used in Measurement and Analysis of Sediment Loads in Streams, Engineering District, St. Paul, MN, USA, District Sub-Office Univ. of Iowa, USA es_ES
dc.description.references Lavee HA, Imeson C, Sarah P (1998) The impact of climate change on geomorphology and desertification along a Mediterranean-arid transect. Land Degrad Dev 9:407–422 es_ES
dc.description.references Le Roux JS, Roos ZN (1982) The rate of soil erosion in the Wuras Dam catchment calculated from sediments trapped in the dam. Z Geomorphol Suppl 26:315–329 es_ES
dc.description.references López-Moreno JI, Goyette S, Beniston M (2009) Impact of climate change on snowpack in the Pyrenees: horizontal spatial variability and vertical gradients. J Hydrol 374:384–396 es_ES
dc.description.references López-Tarazón JA, Batalla RJ, Vericat D, Francke T (2009) Suspended sediment transport in a highly erodible catchment: the River Isábena (Southern Pyrenees). Geomorphology 109:210–221 es_ES
dc.description.references López-Tarazón JA, Batalla RJ, Vericat D, Francke T (2012) The sediment budget of a highly dynamic mesoscale catchment: the River Isábena. Geomorphology 138:15–28. doi: 10.1016/jgeomorph201108020 es_ES
dc.description.references López-Vicente M, Navas A, Machín J (2008) Modelling soil detachment rates in rainfed agrosystems in the south-central Pyrenees. Agric Water Manag 95:1079–1089 es_ES
dc.description.references Mamede GL (2008) Reservoir sedimentation in dryland catchments: modelling and management. PhD dissertation, University of Potsdam, Universitätsbibliothek es_ES
dc.description.references Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk JCJ, Lang H, Parmet BWAH, Schädler B, Schulla J, Wilke K (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine Basin. Clim Chang 49:105–128 es_ES
dc.description.references Miller CR (1953) Determination of the unit weight of sediment for use in sediment volume computations. Bureau of Reclamation Memorandum Denver, Colorado, US es_ES
dc.description.references Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:347–350 es_ES
dc.description.references Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harme RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASAE 50:885–900 es_ES
dc.description.references Mouri G, Golosov V, Chalov S, Takizawa S, Oguma K, Yoshimura K, Shiiba M, Hori T, Oki T (2013) Assessment of potential suspended sediment yield in Japan in the 21st century with reference to the general circulation model climate change scenarios. Glob Planet Chang 102:1–9 es_ES
dc.description.references Mullan D, Favis-Mortlock D, Fealy R (2012) Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agric For Meteorol 156:18–30 es_ES
dc.description.references Müller EN, Francke T (2008) SESAM DATA SESAM: sediment export from semi-arid catchments—measurement and modelling (2005–2008). Potsdam, Germany es_ES
dc.description.references Nadal-Romero E, Lasanta T, Gonzalez-Hidalgo JC, de Luis M, García-Ruiz JM (2012) The effect of intense rainstorm events on the suspended sediment response under various land uses: the Aísa valley experimental station. Cuad Investig Geogr 38:27–47 es_ES
dc.description.references Nakicenovic N, Swart R (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge es_ES
dc.description.references Nearing MA, Pruski FF, O’Neill MR (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv (USA) 59:43–50 es_ES
dc.description.references Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols MH, Nunes JP, Renschler CS, Souchère V, van Oost K (2005) Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61:131–154 es_ES
dc.description.references Nunes JP, Seixas J, Pacheco NR (2008) Vulnerability of water resources vegetation productivity and soil erosion to climate change in Mediterranean watersheds. Hydrol Process 22:3115–3134 es_ES
dc.description.references Olive LJ, Rieger WA (1988) An examination of the role of sampling strategies in the study of suspended sediment transport. In Sediment Budgets. IAHS Publ 174, IAHS Press, Wallingford, UK, pp 259–267 es_ES
dc.description.references Peizhen Z, Molnar P, Downs WR (2001) Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410:891–897 es_ES
dc.description.references Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146 es_ES
dc.description.references Pruski FF, Nearing MA (2002) Climate-induced changes in erosion during the 21st century for eight US locations. Water Resour Res 38:34–1–34–11 es_ES
dc.description.references Raclot D, Albergel J (2006) Runoff and water erosion modelling using WEPP on a Mediterranean cultivated catchment. Phys Chem Earth Parts A/B/C 31:1038–1047 es_ES
dc.description.references Regüés D, Nadal-Romero E (2013) Uncertainty in the evaluation of sediment yield from badland areas: suspended sediment transport estimated in the Araguás catchment (central Spanish Pyrenees). Catena 106:93–100 es_ES
dc.description.references Salazar S, Francés F, Komma J, Blume T, Francke T, Bronstert A, Blöschl G (2013) A comparative analysis of the effectiveness of flood management measures based on the concept of “retaining water in the landscape” in different European hydro-climatic regions. Nat Hazards Earth Syst Sci 12(11):3287–3306 es_ES
dc.description.references Sanz Montero ME, Cobo Rayán R, Avendaño Salas C, Gómez Montaña JL (1996) Influence of the drainage basin area on the sediment yield to Spanish reservoirs. In: Proceedings of the First European Conference and Trace Exposition on Control Erosion es_ES
dc.description.references Seibert J, McDonnell JJ (2002) On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration. Water Resour Res 38(11):23–1–23–14 es_ES
dc.description.references Serrano-Muela P, Nadal-Romero E, Lana-Renault N, González-Hidalgo JC, López-Moreno J I, Beguería S, Sanjuan Y, García-Ruiz JM (2013) An exceptional rainfall event in the Central Western Pyrenees: spatial patterns in discharge and impact. Land Degrad Dev, Online ver. doi: 10.1002/ldr.2221 es_ES
dc.description.references Srinivasan R, Ramanarayanan TS, Arnold JG, Bednarz ST (1998) Large area hydrologic modeling and assessment part II: model application. J Am Water Resour Assoc 34(1):91–101 es_ES
dc.description.references Valero-Garcés BL, Navas A, Machı́n J, Walling D (1999) Sediment sources and siltation in mountain reservoirs: a case study from the Central Spanish Pyrenees. Geomorphology 28:23–41 es_ES
dc.description.references Van Rompaey A, Verstraeten G, Van Oost K, Govers G, Poesen J (2001) Modelling mean annual sediment yield using a distributed approach. Earth Surf Proc Land 26:1221–1236 es_ES
dc.description.references Van Rompaey A, Vieillefont V, Jones RJA, Montanarella L, Verstraeten G, Bazzoffi P, Dostal T, Krasa J, de Vente J, Poesen J (2003) Validation of soil erosion estimates at European scale. European Soil Bureau Research Report No13 EUR 20827 EN Office for Official Publications of the European Communities, Luxembourg es_ES
dc.description.references Verstraeten G, Poesen J, de Vente J, Koninckx X (2003) Sediment yield variability in Spain: a quantitative and semiqualitative analysis using reservoir sedimentation rates. Geomorphology 50:327–348 es_ES
dc.description.references Walling DE, Fang D (2003) Recent trends in the suspended sediment loads of the world’s rivers. Glob Planet Chang 39:111–126 es_ES
dc.description.references Webb BW, Foster IDL, Gurnell A (1995) Hydrology water quality and sediment behaviour. In: Foster IDL, Gurnell A, Webb BW (eds) Sediment and water quality in river catchments. Wiley, Chichester, pp 1–30 es_ES
dc.description.references Wilby RL, Hay LE, Leavesley GH (1999) A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River basin Colorado. J Hydrol 225:67–91 es_ES
dc.description.references Zhao G, Mu X, Wen Z, Wang F, Gao P (2013) Soil erosion, conservation and eco-environment changes in the Loess Plateau of China. Land Degrad Dev 24:499–510 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem