- -

A complete software application for automatic registration of x-ray mammography and magnetic resonance images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A complete software application for automatic registration of x-ray mammography and magnetic resonance images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Solves Llorens, Juan Antonio es_ES
dc.contributor.author Rupérez Moreno, María José es_ES
dc.contributor.author Monserrat, C. es_ES
dc.contributor.author Feliu, E es_ES
dc.contributor.author Garcia, M es_ES
dc.contributor.author Lloret, M es_ES
dc.date.accessioned 2015-05-28T11:19:08Z
dc.date.issued 2014-08
dc.identifier.issn 0094-2405
dc.identifier.uri http://hdl.handle.net/10251/50902
dc.description.abstract Purpose: This work presents a complete and automatic software application to aid radiologists in breast cancer diagnosis. The application is a fully automated method that performs a complete registration of magnetic resonance (MR) images and x-ray (XR) images in both directions (from MR to XR and from XR to MR) and for both x-ray mammograms, craniocaudal (CC), and mediolateral oblique (MLO). This new approximation allows radiologists to mark points in the MR images and, without any manual intervention, it provides their corresponding points in both types of XR mammograms and vice versa. Methods: The application automatically segments magnetic resonance images and x-ray images using the C-Means method and the Otsu method, respectively. It compresses the magnetic resonance images in both directions, CC and MLO, using a biomechanical model of the breast that distinguishes the specific biomechanical behavior of each one of its three tissues (skin, fat, and glandular tissue) separately. It makes a projection of both compressions and registers them with the original XR images using affine transformations and nonrigid registration methods. Results: The application has been validated by two expert radiologists. This was carried out through a quantitative validation on 14 data sets in which the Euclidean distance between points marked by the radiologists and the corresponding points obtained by the application were measured. The results showed a mean error of 4.2 ± 1.9 mm for the MRI to CC registration, 4.8 ± 1.3 mm for the MRI to MLO registration, and 4.1 ± 1.3 mm for the CC and MLO to MRI registration. Conclusions: A complete software application that automatically registers XR and MR images of the breast has been implemented. The application permits radiologists to estimate the position of a lesion that is suspected of being a tumor in an imaging modality based on its position in another different modality with a clinically acceptable error. The results show that the application can accelerate the mammographic screening process for high risk populations or for dense breasts. es_ES
dc.description.sponsorship This project has been partially funded by the Regional Valencian Government (reference ACOMP/2012/181), by CDTI (reference IDI-20101153), and by MICINN (reference TIN2010-20999-C04-01). The authors would like to express our gratitude to the personnel from the HCB and La Fe Hospitals. en_EN
dc.language Inglés es_ES
dc.publisher American Association of Physicists in Medicine: Medical Physics es_ES
dc.relation.ispartof Medical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Breast imaging registration es_ES
dc.subject Biomechanical modeling es_ES
dc.subject X-ray mammography es_ES
dc.subject MRI es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A complete software application for automatic registration of x-ray mammography and magnetic resonance images es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1118/1.4885957
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F181/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//IDI-20101153/ES/TERAPIAS ASISTIVAS COLABORATIVAS PARA EL TRATAMIENTO ONCOLÓGICO MEDIANTE EL USO DE TECNOLOGÍAS TIC - ONCOTIC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2010-20999-C04-01/ES/MODELIZACION BIOMECANICA DE TEJIDOS APLICADO A CIRUGIA ASISTIDA POR ORDENADOR/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Solves Llorens, JA.; Rupérez Moreno, MJ.; Monserrat, C.; Feliu, E.; Garcia, M.; Lloret, M. (2014). A complete software application for automatic registration of x-ray mammography and magnetic resonance images. Medical Physics. 41(8):1-12. https://doi.org/10.1118/1.4885957 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1118/1.4885957 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 41 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 269062
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references KAISER, W. A., FISCHER, H., VAGNER, J., & SELIG, M. (2000). Robotic System for Biopsy and Therapy of Breast Lesions in a High-Field Whole-Body Magnetic Resonance Tomography Unit. Investigative Radiology, 35(8), 513-519. doi:10.1097/00004424-200008000-00008 es_ES
dc.description.references Drukker, K., Horsch, K., & Giger, M. L. (2005). Multimodality Computerized Diagnosis of Breast Lesions Using Mammography and Sonography1. Academic Radiology, 12(8), 970-979. doi:10.1016/j.acra.2005.04.014 es_ES
dc.description.references Behrenbruch, C. P., Marias, K., Armitage, P. A., Yam, M., Moore, N., English, R. E., … Brady, M. (2003). Fusion of contrast-enhanced breast MR and mammographic imaging data. Medical Image Analysis, 7(3), 311-340. doi:10.1016/s1361-8415(03)00015-x es_ES
dc.description.references MARTÍ, R., ZWIGGELAAR, R., RUBIN, C. M. E., & DENTON, E. R. E. (2004). TWO-DIMENSIONAL–THREE-DIMENSIONAL CORRESPONDENCE IN MAMMOGRAPHY. Cybernetics and Systems, 35(1), 85-105. doi:10.1080/019697204902446858 es_ES
dc.description.references Ruiter, N. V., Stotzka, R., Muller, T.-O., Gemmeke, H., Reichenbach, J. R., & Kaiser, W. A. (2006). Model-based registration of X-ray mammograms and MR images of the female breast. IEEE Transactions on Nuclear Science, 53(1), 204-211. doi:10.1109/tns.2005.862983 es_ES
dc.description.references Rajagopal, V., Nielsen, P. M. F., & Nash, M. P. (2010). Modeling breast biomechanics for multi‐modal image analysis—successes and challenges. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2(3), 293-304. doi:10.1002/wsbm.58 es_ES
dc.description.references Chung, J.-H., Rajagopal, V., Nielsen, P. M. F., & Nash, M. P. (2008). Modelling Mammographic Compression of the Breast. Lecture Notes in Computer Science, 758-765. doi:10.1007/978-3-540-85990-1_91 es_ES
dc.description.references Reynolds, H. M., Puthran, J., Doyle, A., Jones, W., Nielsen, P. M. F., Nash, M. P., & Rajagopal, V. (2011). Mapping Breast Cancer Between Clinical X-Ray and MR Images. Computational Biomechanics for Medicine, 81-90. doi:10.1007/978-1-4419-9619-0_9 es_ES
dc.description.references Lee, A. W. C., Rajagopal, V., Babarenda Gamage, T. P., Doyle, A. J., Nielsen, P. M. F., & Nash, M. P. (2013). Breast lesion co-localisation between X-ray and MR images using finite element modelling. Medical Image Analysis, 17(8), 1256-1264. doi:10.1016/j.media.2013.05.011 es_ES
dc.description.references Hopp, T., Dietzel, M., Baltzer, P. A., Kreisel, P., Kaiser, W. A., Gemmeke, H., & Ruiter, N. V. (2013). Automatic multimodal 2D/3D breast image registration using biomechanical FEM models and intensity-based optimization. Medical Image Analysis, 17(2), 209-218. doi:10.1016/j.media.2012.10.003 es_ES
dc.description.references Hopp, T., Baltzer, P., Dietzel, M., Kaiser, W. A., & Ruiter, N. V. (2011). 2D/3D image fusion of X-ray mammograms with breast MRI: visualizing dynamic contrast enhancement in mammograms. International Journal of Computer Assisted Radiology and Surgery, 7(3), 339-348. doi:10.1007/s11548-011-0623-z es_ES
dc.description.references Mertzanidou, T., Hipwell, J. H., Cardoso, M. J., Tanner, C., Ourselin, S., & Hawkes, D. J. (2010). X-ray Mammography – MRI Registration Using a Volume-Preserving Affine Transformation and an EM-MRF for Breast Tissue Classification. Lecture Notes in Computer Science, 23-30. doi:10.1007/978-3-642-13666-5_4 es_ES
dc.description.references Mertzanidou, T., Hipwell, J., Cardoso, M. J., Zhang, X., Tanner, C., Ourselin, S., … Hawkes, D. (2012). MRI to X-ray mammography registration using a volume-preserving affine transformation. Medical Image Analysis, 16(5), 966-975. doi:10.1016/j.media.2012.03.001 es_ES
dc.description.references Mertzanidou, T., Hipwell, J. H., Han, L., Taylor, Z., Huisman, H., Bick, U., … Hawkes, D. J. (2012). Intensity-Based MRI to X-ray Mammography Registration with an Integrated Fast Biomechanical Transformation. Lecture Notes in Computer Science, 48-55. doi:10.1007/978-3-642-31271-7_7 es_ES
dc.description.references Raba, D., Oliver, A., Martí, J., Peracaula, M., & Espunya, J. (2005). Breast Segmentation with Pectoral Muscle Suppression on Digital Mammograms. Lecture Notes in Computer Science, 471-478. doi:10.1007/11492542_58 es_ES
dc.description.references Tzikopoulos, S. D., Mavroforakis, M. E., Georgiou, H. V., Dimitropoulos, N., & Theodoridis, S. (2011). A fully automated scheme for mammographic segmentation and classification based on breast density and asymmetry. Computer Methods and Programs in Biomedicine, 102(1), 47-63. doi:10.1016/j.cmpb.2010.11.016 es_ES
dc.description.references Wang, L., Filippatos, K., Friman, O., & Hahn, H. K. (2011). Fully automated segmentation of the pectoralis muscle boundary in breast MR images. Medical Imaging 2011: Computer-Aided Diagnosis. doi:10.1117/12.877645 es_ES
dc.description.references Nie, K., Chang, D., Chen, J.-H., Shih, T.-C., Hsu, C.-C., Nalcioglu, O., & Su, M.-Y. (2009). Impact of skin removal on quantitative measurement of breast density using MRI. Medical Physics, 37(1), 227-233. doi:10.1118/1.3271353 es_ES
dc.description.references Solves Llorens, J. A., Rupérez, M. J., Monserrat, C., Feliu, E., García, M., & Lloret, M. (2012). Segmentation of the Breast Skin and Its Influence in the Simulation of the Breast Compression during an X-Ray Mammography. The Scientific World Journal, 2012, 1-8. doi:10.1100/2012/876489 es_ES
dc.description.references Samani, A., Bishop, J., Yaffe, M. J., & Plewes, D. B. (2001). Biomechanical 3-D finite element modeling of the human breast using MRI data. IEEE Transactions on Medical Imaging, 20(4), 271-279. doi:10.1109/42.921476 es_ES
dc.description.references Schnabel, J. A., Tanner, C., Castellano Smith, A. D., Hill, D. L. G., Hawkes, D. J., Leach, M. O., … Hose, R. (2001). Validation of Non-rigid Registration Using Finite Element Methods. Information Processing in Medical Imaging, 344-357. doi:10.1007/3-540-45729-1_34 es_ES
dc.description.references Tanner, C., Schnabel, J. A., Hill, D. L. G., Hawkes, D. J., Leach, M. O., & Hose, D. R. (2006). Factors influencing the accuracy of biomechanical breast models. Medical Physics, 33(6Part1), 1758-1769. doi:10.1118/1.2198315 es_ES
dc.description.references Del Palomar, A. P., Calvo, B., Herrero, J., López, J., & Doblaré, M. (2008). A finite element model to accurately predict real deformations of the breast. Medical Engineering & Physics, 30(9), 1089-1097. doi:10.1016/j.medengphy.2008.01.005 es_ES
dc.description.references Tanner, C., White, M., Guarino, S., Hall-Craggs, M. A., Douek, M., & Hawkes, D. J. (2011). Large breast compressions: Observations and evaluation of simulations. Medical Physics, 38(2), 682-690. doi:10.1118/1.3525837 es_ES
dc.description.references Torrent, A., Bardera, A., Oliver, A., Freixenet, J., Boada, I., Feixes, M., … Martí, J. (s. f.). Breast Density Segmentation: A Comparison of Clustering and Region Based Techniques. Lecture Notes in Computer Science, 9-16. doi:10.1007/978-3-540-70538-3_2 es_ES
dc.description.references Nie, K., Chen, J.-H., Chan, S., Chau, M.-K. I., Yu, H. J., Bahri, S., … Su, M.-Y. (2008). Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI. Medical Physics, 35(12), 5253-5262. doi:10.1118/1.3002306 es_ES
dc.description.references Han, L., Hipwell, J. H., Tanner, C., Taylor, Z., Mertzanidou, T., Cardoso, J., … Hawkes, D. J. (2011). Development of patient-specific biomechanical models for predicting large breast deformation. Physics in Medicine and Biology, 57(2), 455-472. doi:10.1088/0031-9155/57/2/455 es_ES
dc.description.references Hendriks, F. M., Brokken, D., van Eemeren, J. T. W. M., Oomens, C. W. J., Baaijens, F. P. T., & Horsten, J. B. A. M. (2003). A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin. Skin Research and Technology, 9(3), 274-283. doi:10.1034/j.1600-0846.2003.00019.x es_ES
dc.description.references Winslow, M., Xu, X. G., & Yazici, B. (2005). Development of a simulator for radiographic image optimization. Computer Methods and Programs in Biomedicine, 78(3), 179-190. doi:10.1016/j.cmpb.2005.02.004 es_ES
dc.description.references Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging, 18(8), 712-721. doi:10.1109/42.796284 es_ES
dc.description.references Rohlfing, T., Maurer, C. R., Bluemke, D. A., & Jacobs, M. A. (2003). Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Transactions on Medical Imaging, 22(6), 730-741. doi:10.1109/tmi.2003.814791 es_ES
dc.description.references Staring, M., Klein, S., & Pluim, J. P. W. (2006). Nonrigid registration using a rigidity constraint. Medical Imaging 2006: Image Processing. doi:10.1117/12.654362 es_ES
dc.description.references Besson, O., Dobigeon, N., & Tourneret, J.-Y. (2011). Minimum Mean Square Distance Estimation of a Subspace. IEEE Transactions on Signal Processing, 59(12), 5709-5720. doi:10.1109/tsp.2011.2166548 es_ES
dc.description.references Niroomandi, S., Alfaro, I., Cueto, E., & Chinesta, F. (2008). Real-time deformable models of non-linear tissues by model reduction techniques. Computer Methods and Programs in Biomedicine, 91(3), 223-231. doi:10.1016/j.cmpb.2008.04.008 es_ES
dc.description.references Niroomandi, S., Alfaro, I., González, D., Cueto, E., & Chinesta, F. (2012). Real-time simulation of surgery by reduced-order modeling and X-FEM techniques. International Journal for Numerical Methods in Biomedical Engineering, 28(5), 574-588. doi:10.1002/cnm.1491 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem