Mostrar el registro sencillo del ítem
dc.contributor.author | Solves Llorens, Juan Antonio | es_ES |
dc.contributor.author | Rupérez Moreno, María José | es_ES |
dc.contributor.author | Monserrat, C. | es_ES |
dc.contributor.author | Feliu, E | es_ES |
dc.contributor.author | Garcia, M | es_ES |
dc.contributor.author | Lloret, M | es_ES |
dc.date.accessioned | 2015-05-28T11:19:08Z | |
dc.date.issued | 2014-08 | |
dc.identifier.issn | 0094-2405 | |
dc.identifier.uri | http://hdl.handle.net/10251/50902 | |
dc.description.abstract | Purpose: This work presents a complete and automatic software application to aid radiologists in breast cancer diagnosis. The application is a fully automated method that performs a complete registration of magnetic resonance (MR) images and x-ray (XR) images in both directions (from MR to XR and from XR to MR) and for both x-ray mammograms, craniocaudal (CC), and mediolateral oblique (MLO). This new approximation allows radiologists to mark points in the MR images and, without any manual intervention, it provides their corresponding points in both types of XR mammograms and vice versa. Methods: The application automatically segments magnetic resonance images and x-ray images using the C-Means method and the Otsu method, respectively. It compresses the magnetic resonance images in both directions, CC and MLO, using a biomechanical model of the breast that distinguishes the specific biomechanical behavior of each one of its three tissues (skin, fat, and glandular tissue) separately. It makes a projection of both compressions and registers them with the original XR images using affine transformations and nonrigid registration methods. Results: The application has been validated by two expert radiologists. This was carried out through a quantitative validation on 14 data sets in which the Euclidean distance between points marked by the radiologists and the corresponding points obtained by the application were measured. The results showed a mean error of 4.2 ± 1.9 mm for the MRI to CC registration, 4.8 ± 1.3 mm for the MRI to MLO registration, and 4.1 ± 1.3 mm for the CC and MLO to MRI registration. Conclusions: A complete software application that automatically registers XR and MR images of the breast has been implemented. The application permits radiologists to estimate the position of a lesion that is suspected of being a tumor in an imaging modality based on its position in another different modality with a clinically acceptable error. The results show that the application can accelerate the mammographic screening process for high risk populations or for dense breasts. | es_ES |
dc.description.sponsorship | This project has been partially funded by the Regional Valencian Government (reference ACOMP/2012/181), by CDTI (reference IDI-20101153), and by MICINN (reference TIN2010-20999-C04-01). The authors would like to express our gratitude to the personnel from the HCB and La Fe Hospitals. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Association of Physicists in Medicine: Medical Physics | es_ES |
dc.relation.ispartof | Medical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Breast imaging registration | es_ES |
dc.subject | Biomechanical modeling | es_ES |
dc.subject | X-ray mammography | es_ES |
dc.subject | MRI | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A complete software application for automatic registration of x-ray mammography and magnetic resonance images | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1118/1.4885957 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F181/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//IDI-20101153/ES/TERAPIAS ASISTIVAS COLABORATIVAS PARA EL TRATAMIENTO ONCOLÓGICO MEDIANTE EL USO DE TECNOLOGÍAS TIC - ONCOTIC/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2010-20999-C04-01/ES/MODELIZACION BIOMECANICA DE TEJIDOS APLICADO A CIRUGIA ASISTIDA POR ORDENADOR/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Solves Llorens, JA.; Rupérez Moreno, MJ.; Monserrat, C.; Feliu, E.; Garcia, M.; Lloret, M. (2014). A complete software application for automatic registration of x-ray mammography and magnetic resonance images. Medical Physics. 41(8):1-12. https://doi.org/10.1118/1.4885957 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1118/1.4885957 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 41 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 269062 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | KAISER, W. A., FISCHER, H., VAGNER, J., & SELIG, M. (2000). Robotic System for Biopsy and Therapy of Breast Lesions in a High-Field Whole-Body Magnetic Resonance Tomography Unit. Investigative Radiology, 35(8), 513-519. doi:10.1097/00004424-200008000-00008 | es_ES |
dc.description.references | Drukker, K., Horsch, K., & Giger, M. L. (2005). Multimodality Computerized Diagnosis of Breast Lesions Using Mammography and Sonography1. Academic Radiology, 12(8), 970-979. doi:10.1016/j.acra.2005.04.014 | es_ES |
dc.description.references | Behrenbruch, C. P., Marias, K., Armitage, P. A., Yam, M., Moore, N., English, R. E., … Brady, M. (2003). Fusion of contrast-enhanced breast MR and mammographic imaging data. Medical Image Analysis, 7(3), 311-340. doi:10.1016/s1361-8415(03)00015-x | es_ES |
dc.description.references | MARTÍ, R., ZWIGGELAAR, R., RUBIN, C. M. E., & DENTON, E. R. E. (2004). TWO-DIMENSIONAL–THREE-DIMENSIONAL CORRESPONDENCE IN MAMMOGRAPHY. Cybernetics and Systems, 35(1), 85-105. doi:10.1080/019697204902446858 | es_ES |
dc.description.references | Ruiter, N. V., Stotzka, R., Muller, T.-O., Gemmeke, H., Reichenbach, J. R., & Kaiser, W. A. (2006). Model-based registration of X-ray mammograms and MR images of the female breast. IEEE Transactions on Nuclear Science, 53(1), 204-211. doi:10.1109/tns.2005.862983 | es_ES |
dc.description.references | Rajagopal, V., Nielsen, P. M. F., & Nash, M. P. (2010). Modeling breast biomechanics for multi‐modal image analysis—successes and challenges. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2(3), 293-304. doi:10.1002/wsbm.58 | es_ES |
dc.description.references | Chung, J.-H., Rajagopal, V., Nielsen, P. M. F., & Nash, M. P. (2008). Modelling Mammographic Compression of the Breast. Lecture Notes in Computer Science, 758-765. doi:10.1007/978-3-540-85990-1_91 | es_ES |
dc.description.references | Reynolds, H. M., Puthran, J., Doyle, A., Jones, W., Nielsen, P. M. F., Nash, M. P., & Rajagopal, V. (2011). Mapping Breast Cancer Between Clinical X-Ray and MR Images. Computational Biomechanics for Medicine, 81-90. doi:10.1007/978-1-4419-9619-0_9 | es_ES |
dc.description.references | Lee, A. W. C., Rajagopal, V., Babarenda Gamage, T. P., Doyle, A. J., Nielsen, P. M. F., & Nash, M. P. (2013). Breast lesion co-localisation between X-ray and MR images using finite element modelling. Medical Image Analysis, 17(8), 1256-1264. doi:10.1016/j.media.2013.05.011 | es_ES |
dc.description.references | Hopp, T., Dietzel, M., Baltzer, P. A., Kreisel, P., Kaiser, W. A., Gemmeke, H., & Ruiter, N. V. (2013). Automatic multimodal 2D/3D breast image registration using biomechanical FEM models and intensity-based optimization. Medical Image Analysis, 17(2), 209-218. doi:10.1016/j.media.2012.10.003 | es_ES |
dc.description.references | Hopp, T., Baltzer, P., Dietzel, M., Kaiser, W. A., & Ruiter, N. V. (2011). 2D/3D image fusion of X-ray mammograms with breast MRI: visualizing dynamic contrast enhancement in mammograms. International Journal of Computer Assisted Radiology and Surgery, 7(3), 339-348. doi:10.1007/s11548-011-0623-z | es_ES |
dc.description.references | Mertzanidou, T., Hipwell, J. H., Cardoso, M. J., Tanner, C., Ourselin, S., & Hawkes, D. J. (2010). X-ray Mammography – MRI Registration Using a Volume-Preserving Affine Transformation and an EM-MRF for Breast Tissue Classification. Lecture Notes in Computer Science, 23-30. doi:10.1007/978-3-642-13666-5_4 | es_ES |
dc.description.references | Mertzanidou, T., Hipwell, J., Cardoso, M. J., Zhang, X., Tanner, C., Ourselin, S., … Hawkes, D. (2012). MRI to X-ray mammography registration using a volume-preserving affine transformation. Medical Image Analysis, 16(5), 966-975. doi:10.1016/j.media.2012.03.001 | es_ES |
dc.description.references | Mertzanidou, T., Hipwell, J. H., Han, L., Taylor, Z., Huisman, H., Bick, U., … Hawkes, D. J. (2012). Intensity-Based MRI to X-ray Mammography Registration with an Integrated Fast Biomechanical Transformation. Lecture Notes in Computer Science, 48-55. doi:10.1007/978-3-642-31271-7_7 | es_ES |
dc.description.references | Raba, D., Oliver, A., Martí, J., Peracaula, M., & Espunya, J. (2005). Breast Segmentation with Pectoral Muscle Suppression on Digital Mammograms. Lecture Notes in Computer Science, 471-478. doi:10.1007/11492542_58 | es_ES |
dc.description.references | Tzikopoulos, S. D., Mavroforakis, M. E., Georgiou, H. V., Dimitropoulos, N., & Theodoridis, S. (2011). A fully automated scheme for mammographic segmentation and classification based on breast density and asymmetry. Computer Methods and Programs in Biomedicine, 102(1), 47-63. doi:10.1016/j.cmpb.2010.11.016 | es_ES |
dc.description.references | Wang, L., Filippatos, K., Friman, O., & Hahn, H. K. (2011). Fully automated segmentation of the pectoralis muscle boundary in breast MR images. Medical Imaging 2011: Computer-Aided Diagnosis. doi:10.1117/12.877645 | es_ES |
dc.description.references | Nie, K., Chang, D., Chen, J.-H., Shih, T.-C., Hsu, C.-C., Nalcioglu, O., & Su, M.-Y. (2009). Impact of skin removal on quantitative measurement of breast density using MRI. Medical Physics, 37(1), 227-233. doi:10.1118/1.3271353 | es_ES |
dc.description.references | Solves Llorens, J. A., Rupérez, M. J., Monserrat, C., Feliu, E., García, M., & Lloret, M. (2012). Segmentation of the Breast Skin and Its Influence in the Simulation of the Breast Compression during an X-Ray Mammography. The Scientific World Journal, 2012, 1-8. doi:10.1100/2012/876489 | es_ES |
dc.description.references | Samani, A., Bishop, J., Yaffe, M. J., & Plewes, D. B. (2001). Biomechanical 3-D finite element modeling of the human breast using MRI data. IEEE Transactions on Medical Imaging, 20(4), 271-279. doi:10.1109/42.921476 | es_ES |
dc.description.references | Schnabel, J. A., Tanner, C., Castellano Smith, A. D., Hill, D. L. G., Hawkes, D. J., Leach, M. O., … Hose, R. (2001). Validation of Non-rigid Registration Using Finite Element Methods. Information Processing in Medical Imaging, 344-357. doi:10.1007/3-540-45729-1_34 | es_ES |
dc.description.references | Tanner, C., Schnabel, J. A., Hill, D. L. G., Hawkes, D. J., Leach, M. O., & Hose, D. R. (2006). Factors influencing the accuracy of biomechanical breast models. Medical Physics, 33(6Part1), 1758-1769. doi:10.1118/1.2198315 | es_ES |
dc.description.references | Del Palomar, A. P., Calvo, B., Herrero, J., López, J., & Doblaré, M. (2008). A finite element model to accurately predict real deformations of the breast. Medical Engineering & Physics, 30(9), 1089-1097. doi:10.1016/j.medengphy.2008.01.005 | es_ES |
dc.description.references | Tanner, C., White, M., Guarino, S., Hall-Craggs, M. A., Douek, M., & Hawkes, D. J. (2011). Large breast compressions: Observations and evaluation of simulations. Medical Physics, 38(2), 682-690. doi:10.1118/1.3525837 | es_ES |
dc.description.references | Torrent, A., Bardera, A., Oliver, A., Freixenet, J., Boada, I., Feixes, M., … Martí, J. (s. f.). Breast Density Segmentation: A Comparison of Clustering and Region Based Techniques. Lecture Notes in Computer Science, 9-16. doi:10.1007/978-3-540-70538-3_2 | es_ES |
dc.description.references | Nie, K., Chen, J.-H., Chan, S., Chau, M.-K. I., Yu, H. J., Bahri, S., … Su, M.-Y. (2008). Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI. Medical Physics, 35(12), 5253-5262. doi:10.1118/1.3002306 | es_ES |
dc.description.references | Han, L., Hipwell, J. H., Tanner, C., Taylor, Z., Mertzanidou, T., Cardoso, J., … Hawkes, D. J. (2011). Development of patient-specific biomechanical models for predicting large breast deformation. Physics in Medicine and Biology, 57(2), 455-472. doi:10.1088/0031-9155/57/2/455 | es_ES |
dc.description.references | Hendriks, F. M., Brokken, D., van Eemeren, J. T. W. M., Oomens, C. W. J., Baaijens, F. P. T., & Horsten, J. B. A. M. (2003). A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin. Skin Research and Technology, 9(3), 274-283. doi:10.1034/j.1600-0846.2003.00019.x | es_ES |
dc.description.references | Winslow, M., Xu, X. G., & Yazici, B. (2005). Development of a simulator for radiographic image optimization. Computer Methods and Programs in Biomedicine, 78(3), 179-190. doi:10.1016/j.cmpb.2005.02.004 | es_ES |
dc.description.references | Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging, 18(8), 712-721. doi:10.1109/42.796284 | es_ES |
dc.description.references | Rohlfing, T., Maurer, C. R., Bluemke, D. A., & Jacobs, M. A. (2003). Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Transactions on Medical Imaging, 22(6), 730-741. doi:10.1109/tmi.2003.814791 | es_ES |
dc.description.references | Staring, M., Klein, S., & Pluim, J. P. W. (2006). Nonrigid registration using a rigidity constraint. Medical Imaging 2006: Image Processing. doi:10.1117/12.654362 | es_ES |
dc.description.references | Besson, O., Dobigeon, N., & Tourneret, J.-Y. (2011). Minimum Mean Square Distance Estimation of a Subspace. IEEE Transactions on Signal Processing, 59(12), 5709-5720. doi:10.1109/tsp.2011.2166548 | es_ES |
dc.description.references | Niroomandi, S., Alfaro, I., Cueto, E., & Chinesta, F. (2008). Real-time deformable models of non-linear tissues by model reduction techniques. Computer Methods and Programs in Biomedicine, 91(3), 223-231. doi:10.1016/j.cmpb.2008.04.008 | es_ES |
dc.description.references | Niroomandi, S., Alfaro, I., González, D., Cueto, E., & Chinesta, F. (2012). Real-time simulation of surgery by reduced-order modeling and X-FEM techniques. International Journal for Numerical Methods in Biomedical Engineering, 28(5), 574-588. doi:10.1002/cnm.1491 | es_ES |