Mostrar el registro sencillo del ítem
dc.contributor.author | Frerick, Leonhard | es_ES |
dc.contributor.author | Jorda Mora, Enrique | es_ES |
dc.contributor.author | Wengenroth, Jochen | es_ES |
dc.date.accessioned | 2015-05-29T10:28:39Z | |
dc.date.available | 2015-05-29T10:28:39Z | |
dc.date.issued | 2011-08-01 | |
dc.identifier.issn | 0022-1236 | |
dc.identifier.uri | http://hdl.handle.net/10251/50965 | |
dc.description.abstract | For a compact set K subset of R(d) we present a rather easy construction of a linear extension operator E : epsilon (K) -> C(infinity) for the space of Whitney jets epsilon (K) which satisfies linear tame continuity estimates sup{vertical bar partial derivative alpha E(f)(x)vertical bar: vertical bar alpha vertical bar <= m, x is an element of R(d)} <= C(m,epsilon)parallel to f parallel to((r+epsilon)m), where parallel to center dot parallel to(s) denotes the s-th Whitney norm. The construction turns out to be possible if and only if the local Markov inequality LMI(s) introduced by Bos and Milmon holds for every s > r on K. In particular, epsilon(K) admits a tame linear extension operator if and only if the local Markov inequality LMI(s) holds on K for some s >= 1. (C) 2011 Elsevier Inc. All rights reserved. | es_ES |
dc.description.sponsorship | The research of the author was partially supported by MEC and FEDER, Project MTM2009-15200 and Project MTM2010-15200, and by GVA, Projects GV/2010/040, and Universidad Politecnica de.Valencia, Project Ref. 2773. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Functional Analysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Whitney jet | es_ES |
dc.subject | Extension operator | es_ES |
dc.subject | Markov inequality | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Tame linear extension operators for smooth Whitney functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jfa.2011.04.008 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-15200/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS MATEMATICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//2773/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2010%2F040/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2009-15200/ES/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Frerick, L.; Jorda Mora, E.; Wengenroth, J. (2011). Tame linear extension operators for smooth Whitney functions. Journal of Functional Analysis. 261(3):591-603. https://doi.org/10.1016/j.jfa.2011.04.008 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.jfa.2011.04.008 | es_ES |
dc.description.upvformatpinicio | 591 | es_ES |
dc.description.upvformatpfin | 603 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 261 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 216957 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |