- -

Efficient deterministic finite automata split-minimization derived from Brzozowski's algorithm

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient deterministic finite automata split-minimization derived from Brzozowski's algorithm

Mostrar el registro completo del ítem

García Gómez, P.; López Rodríguez, D.; Vázquez-De-Parga Andrade, M. (2014). Efficient deterministic finite automata split-minimization derived from Brzozowski's algorithm. International Journal of Foundations of Computer Science. 25(6):679-696. doi:10.1142/S0129054114500282

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/50974

Ficheros en el ítem

Metadatos del ítem

Título: Efficient deterministic finite automata split-minimization derived from Brzozowski's algorithm
Autor: García Gómez, Pedro López Rodríguez, Damián Vázquez-De-Parga Andrade, Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
Minimization of deterministic finite automata is a classic problem in Computer Science which is still studied nowadays. In this paper, we relate the different split-minimization methods proposed to date, or to be proposed, ...[+]
Palabras clave: DFA minimization , Brzozowski s algorithm , Hopcroft s algorithm
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Foundations of Computer Science. (issn: 1793-6373 )
DOI: 10.1142/S0129054114500282
Editorial:
World Scientific Publishing
Versión del editor: http://dx.doi.org/10.1142/S0129054114500282
Tipo: Artículo

References

Vázquez de Parga, M., García, P., & López, D. (2013). A polynomial double reversal minimization algorithm for deterministic finite automata. Theoretical Computer Science, 487, 17-22. doi:10.1016/j.tcs.2013.03.005

Courcelle, B., Niwinski, D., & Podelski, A. (1991). A geometrical view of the determinization and minimization of finite-state automata. Mathematical Systems Theory, 24(1), 117-146. doi:10.1007/bf02090394

POLÁK, L. (2005). MINIMALIZATIONS OF NFA USING THE UNIVERSAL AUTOMATON. International Journal of Foundations of Computer Science, 16(05), 999-1010. doi:10.1142/s0129054105003431 [+]
Vázquez de Parga, M., García, P., & López, D. (2013). A polynomial double reversal minimization algorithm for deterministic finite automata. Theoretical Computer Science, 487, 17-22. doi:10.1016/j.tcs.2013.03.005

Courcelle, B., Niwinski, D., & Podelski, A. (1991). A geometrical view of the determinization and minimization of finite-state automata. Mathematical Systems Theory, 24(1), 117-146. doi:10.1007/bf02090394

POLÁK, L. (2005). MINIMALIZATIONS OF NFA USING THE UNIVERSAL AUTOMATON. International Journal of Foundations of Computer Science, 16(05), 999-1010. doi:10.1142/s0129054105003431

Gries, D. (1973). Describing an algorithm by Hopcroft. Acta Informatica, 2(2). doi:10.1007/bf00264025

Blum, N. (1996). An O(n log n) implementation of the standard method for minimizing n-state finite automata. Information Processing Letters, 57(2), 65-69. doi:10.1016/0020-0190(95)00199-9

Knuutila, T. (2001). Re-describing an algorithm by Hopcroft. Theoretical Computer Science, 250(1-2), 333-363. doi:10.1016/s0304-3975(99)00150-4

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem