- -

Strong organic bases as building blocks of mesoporous hybrid catalysts for C-C forming bond reactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Strong organic bases as building blocks of mesoporous hybrid catalysts for C-C forming bond reactions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gianotti, Enrica es_ES
dc.contributor.author Díaz Morales, Urbano Manuel es_ES
dc.contributor.author Velty, Alexandra es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2015-06-01T12:07:19Z
dc.date.issued 2012
dc.identifier.issn 1434-1948
dc.identifier.uri http://hdl.handle.net/10251/51053
dc.description.abstract [EN] 1,8-Bis(tetramethylguanidino)naphthalene (TMGN), a neutral organic base that combines the properties of guanidine and the properties of proton sponges, was used as a building block to produce organicinorganic silica-based mesoporous hybrids with strong basic properties. The TMGN-based mesoporous hybrids (TMGN/SiO2) were prepared by a solgel route working at a neutral pH and low temperatures, which avoided the use of SDAs. TMGN has been modified in order to have two terminal reactive silyl groups able to perform co-condensation with a conventional organosilane (TMOS) used as a silicon source. This synthesis has allowed us to directly introduce the unmodified, functionalized TMGN as part of the walls of the mesoporous silica by a one-pot synthesis. TMGN/SiO2 hybrid materials present excellent catalytic properties for CC bond forming reactions: Knoevenagel, Henry (nitroaldol), and ClaisenSchmidt condensations. The activity of the hybrid materials is higher than that of the counterpart homogeneous catalyst. es_ES
dc.description.sponsorship The authors thank the Spanish Government by Consolider Ingenio 2010 MULTICAT (number CSD2009-00050) and MAT2011 (number 29020-C02-01) projects. E. G. is grateful for the financial support from the Marie Curie Fellowship (grant number FP7-PEO-PLE-2009-IEF). en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag GmbH & Co. es_ES
dc.relation.ispartof European Journal of Inorganic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Organic-inorganic hybrid composites es_ES
dc.subject Proton sponges es_ES
dc.subject Sol-gel processes es_ES
dc.subject Basic catalysts es_ES
dc.subject C-C coupling es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Strong organic bases as building blocks of mesoporous hybrid catalysts for C-C forming bond reactions es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/ejic.201200716
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/252367/EU/Decomposition of Structured Tensors, Algorithms and Characterization./
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-29020-C02-01/ES/CATALIZADORES HIBRIDOS MULTIFUNCIONALES BASADOS EN UNIDADES ESTRUCTURALES ORGANICAS-INORGANICAS UTILIZADOS EN REACCIONES CASCADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Gianotti, E.; Díaz Morales, UM.; Velty, A.; Corma Canós, A. (2012). Strong organic bases as building blocks of mesoporous hybrid catalysts for C-C forming bond reactions. European Journal of Inorganic Chemistry. 32:5175-5185. https://doi.org/10.1002/ejic.201200716 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/ejic.201200716 es_ES
dc.description.upvformatpinicio 5175 es_ES
dc.description.upvformatpfin 5185 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.relation.senia 240597
dc.identifier.eissn 1099-0682
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m es_ES
dc.description.references Bigi, F., Carloni, S., Maggi, R., Mazzacani, A., & Sartori, G. (2000). Nitroaldol condensation promoted by organic bases tethered to amorphous silica and MCM-41-type materials. 12th International Congress on Catalysis, Proceedings of the 12th ICC, 3501-3506. doi:10.1016/s0167-2991(00)80565-0 es_ES
dc.description.references Cheng, S., Wang, X., & Chen, S.-Y. (2009). Applications of Amine-functionalized Mesoporous Silica in Fine Chemical Synthesis. Topics in Catalysis, 52(6-7), 681-687. doi:10.1007/s11244-009-9216-2 es_ES
dc.description.references Rodriguez, I., Iborra, S., Corma, A., Rey, F., & Jordá, J. L. (1999). MCM-41–Quaternary organic tetraalkylammonium hydroxide composites as strong and stable Brønsted base catalysts. Chemical Communications, (7), 593-594. doi:10.1039/a900384c es_ES
dc.description.references Rodriguez, I., Iborra, S., Rey, F., & Corma, A. (2000). Heterogeneized Brönsted base catalysts for fine chemicals production: grafted quaternary organic ammonium hydroxides as catalyst for the production of chromenes and coumarins. Applied Catalysis A: General, 194-195, 241-252. doi:10.1016/s0926-860x(99)00371-3 es_ES
dc.description.references Blanc, A. C., Valle, S., Renard, G., Brunel, D., Macquarrie, D. J., & Quinn, C. R. (2000). The preparation and use of novel immobilised guanidine catalysts in base-catalysed epoxidation and condensation reactions. Green Chemistry, 2(6), 283-288. doi:10.1039/b005929n es_ES
dc.description.references Gianotti, E., Diaz, U., Coluccia, S., & Corma, A. (2011). Hybrid organic–inorganic catalytic mesoporous materials with proton sponges as building blocks. Physical Chemistry Chemical Physics, 13(24), 11702. doi:10.1039/c1cp20588a es_ES
dc.description.references Alder, R. W. (1989). Strain effects on amine basicities. Chemical Reviews, 89(5), 1215-1223. doi:10.1021/cr00095a015 es_ES
dc.description.references Staab, H. A., Saupe, T., & Krieger, C. (2006). 4,5-Bis(dimethylamino)fluoren, ein neuer „Protonenschwamm”︁. Angewandte Chemie, 95(9), 748-749. doi:10.1002/ange.19830950924 es_ES
dc.description.references Staab, H. A., Höne, M., & Krieger, C. (1988). Synthesis, structure and basicity of 1,9-bis(dimethylamino)-dibenzothiophene and 1,9-bis(dimethylamino)-dibenzoselenophene1,2). Tetrahedron Letters, 29(16), 1905-1908. doi:10.1016/s0040-4039(00)82074-2 es_ES
dc.description.references Saupe, T., Krieger, C., & Staab, H. A. (1986). 4,5-Bis(dimethylamino)phenanthren und 4,5-Bis(dimethylamino)-9,10-dihydrophenanthren: Synthesen und „Protonenschwamm”-Eigenschaften. Angewandte Chemie, 98(5), 460-462. doi:10.1002/ange.19860980521 es_ES
dc.description.references Zirnstein, M. A., & Staab, H. A. (1987). Chino[7,8-h]chinolin, ein „Protonenschwamm” neuen Typs. Angewandte Chemie, 99(5), 460-461. doi:10.1002/ange.19870990512 es_ES
dc.description.references Pozharskii, A. F. (1998). Naphthalene «proton sponges». Russian Chemical Reviews, 67(1), 1-24. doi:10.1070/rc1998v067n01abeh000377 es_ES
dc.description.references Raab, V., Gauchenova, E., Merkoulov, A., Harms, K., Sundermeyer, J., Kovačević, B., & Maksić, Z. B. (2005). 1,8-Bis(hexamethyltriaminophosphazenyl)naphthalene, HMPN:  A Superbasic Bisphosphazene «Proton Sponge». Journal of the American Chemical Society, 127(45), 15738-15743. doi:10.1021/ja052647v es_ES
dc.description.references Reiter, S. A., Nogai, S. D., Karaghiosoff, K., & Schmidbaur, H. (2004). Insignificance of P−H···P Hydrogen Bonding:  Structural Chemistry of Neutral and Protonated 1,8-Di(phosphinyl)naphthalene. Journal of the American Chemical Society, 126(48), 15833-15843. doi:10.1021/ja045460x es_ES
dc.description.references Ozeryanskii, V. A., Pozharskii, A. F., Bieńko, A. J., Sawka-Dobrowolska, W., & Sobczyk, L. (2005). [NHN]+Hydrogen Bonding in Protonated 1,8-Bis(dimethylamino)-2,7-dimethoxynaphthalene. X-ray Diffraction, Infrared, and Theoretical ab Initio and DFT Studies. The Journal of Physical Chemistry A, 109(8), 1637-1642. doi:10.1021/jp040618l es_ES
dc.description.references Raab, V., Kipke, J., Gschwind, R. M., & Sundermeyer, J. (2002). 1,8-Bis(tetramethylguanidino)naphthalene (TMGN): A New, Superbasic and Kinetically Active «Proton Sponge». Chemistry - A European Journal, 8(7), 1682-1693. doi:10.1002/1521-3765(20020402)8:7<1682::aid-chem1682>3.0.co;2-r es_ES
dc.description.references Kovačević, B., Maksić, Z. B., Vianello, R., & Primorac, M. (2002). Computer aided design of organic superbases: the role of intramolecular hydrogen bonding. New J. Chem., 26(10), 1329-1334. doi:10.1039/b204072g es_ES
dc.description.references (s. f.). doi:10.1021/jo034906 es_ES
dc.description.references Kovačević, B., & Maksić, Z. B. (2002). The Proton Affinity of the Superbase 1,8-Bis(tetramethylguanidino)naphthalene (TMGN) and Some Related Compounds: A Theoretical Study. Chemistry - A European Journal, 8(7), 1694-1702. doi:10.1002/1521-3765(20020402)8:7<1694::aid-chem1694>3.0.co;2-d es_ES
dc.description.references Przybylski, P., Gierczyk, B., Schroeder, G., Zundel, G., Brzezinski, B., & Bartl, F. (2007). Spectroscopic and PM5 semiempirical studies of the proton accepting properties of 1,8-bis(tetramethylguanidino)naphthalene. Journal of Molecular Structure, 844-845, 157-165. doi:10.1016/j.molstruc.2007.03.029 es_ES
dc.description.references Wüstefeld, H.-U., Kaska, W. C., Schüth, F., Stucky, G. D., Bu, X., & Krebs, B. (2001). Übergangsmetallkomplexe des Protonenschwammes 4,9-Dichlorchino[7,8-h]chinolin: ein stark gekrümmtes aromatisches System und extreme „Out-of-plane“-Position des Übergangsmetallzentrums. Angewandte Chemie, 113(17), 3280-3282. doi:10.1002/1521-3757(20010903)113:17<3280::aid-ange3280>3.0.co;2-r es_ES
dc.description.references Wild, U., Hübner, O., Maronna, A., Enders, M., Kaifer, E., Wadepohl, H., & Himmel, H.-J. (2008). The First Metal Complexes of the Proton Sponge 1,8-Bis(N,N,N′,N′-tetramethylguanidino)naphthalene: Syntheses and Properties. European Journal of Inorganic Chemistry, 2008(28), 4440-4447. doi:10.1002/ejic.200800677 es_ES
dc.description.references Pope, E. J. A., & Mackenzie, J. D. (1986). Sol-gel processing of silica. Journal of Non-Crystalline Solids, 87(1-2), 185-198. doi:10.1016/s0022-3093(86)80078-3 es_ES
dc.description.references Winter, R., Chan, J.-B., Frattini, R., & Jonas, J. (1988). The effect of fluoride on the sol-gel process. Journal of Non-Crystalline Solids, 105(3), 214-222. doi:10.1016/0022-3093(88)90310-9 es_ES
dc.description.references Reale, E., Leyva, A., Corma, A., Martínez, C., García, H., & Rey, F. (2005). A fluoride-catalyzed sol–gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants. Journal of Materials Chemistry, 15(17), 1742. doi:10.1039/b415066j es_ES
dc.description.references Díaz, U., García, T., Velty, A., & Corma, A. (2009). Hybrid organic–inorganic catalytic porous materials synthesized at neutral pH in absence of structural directing agents. Journal of Materials Chemistry, 19(33), 5970. doi:10.1039/b906821j es_ES
dc.description.references Xia, Y., Yang, Z.-Y., Xia, P., Bastow, K. F., Nakanishi, Y., & Lee, K.-H. (2000). Antitumor agents. Part 202: Novel 2′-amino chalcones: design, synthesis and biological evaluation. Bioorganic & Medicinal Chemistry Letters, 10(8), 699-701. doi:10.1016/s0960-894x(00)00072-x es_ES
dc.description.references HSIEH, H.-K., TSAO, L.-T., WANG, J.-P., & LIN, C.-N. (2000). Synthesis and Anti-inflammatory Effect of Chalcones. Journal of Pharmacy and Pharmacology, 52(2), 163-171. doi:10.1211/0022357001773814 es_ES
dc.description.references Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. ., & Pratap, R. (2004). Synthesis and antihyperglycemic activity of chalcone based aryloxypropanolamines. Bioorganic & Medicinal Chemistry, 12(5), 883-889. doi:10.1016/j.bmc.2003.12.026 es_ES
dc.description.references Qian, H., Liu, D., & Lv, C. (2011). Synthesis of Chalcones via Claisen-Schmidt Reaction Catalyzed by Sulfonic Acid-Functional Ionic Liquids. Industrial & Engineering Chemistry Research, 50(2), 1146-1149. doi:10.1021/ie101790k es_ES
dc.description.references Seo, Y.-K., Park, S.-B., & Ho Park, D. (2006). Mesoporous hybrid organosilica containing urethane moieties. Journal of Solid State Chemistry, 179(4), 1285-1288. doi:10.1016/j.jssc.2006.01.021 es_ES
dc.description.references Kawahara, K., Hagiwara, Y., Shimojima, A., & Kuroda, K. (2008). Stepwise silylation of double-four-ring (D4R) silicate into a novel spherical siloxane with a defined architecture. Journal of Materials Chemistry, 18(27), 3193. doi:10.1039/b807533f es_ES
dc.description.references CLIMENT, M. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316-326. doi:10.1016/j.jcat.2004.04.027 es_ES
dc.description.references Rodriguez, I., Sastre, G., Corma, A., & Iborra, S. (1999). Catalytic Activity of Proton Sponge: Application to Knoevenagel Condensation Reactions. Journal of Catalysis, 183(1), 14-23. doi:10.1006/jcat.1998.2380 es_ES
dc.description.references Prout, F. S., Beaucaire, V. D., Dyrkacz, G. R., Koppes, W. M., Kuznicki, R. E., Marlewski, T. A., … Puda, J. M. (1973). Konevenagel Reaction. Kinetic study of the reaction of (+)-3-methyl-cyclohexanone with malononitrile. The Journal of Organic Chemistry, 38(8), 1512-1517. doi:10.1021/jo00948a015 es_ES
dc.description.references Guyot, J., & Kergomard, A. (1983). Cinétique et mécanisme de la réaction de knoevenagel dans le benzène—1. Tetrahedron, 39(7), 1161-1166. doi:10.1016/s0040-4020(01)91879-4 es_ES
dc.description.references Luzzio, F. A. (2001). The Henry reaction: recent examples. Tetrahedron, 57(6), 915-945. doi:10.1016/s0040-4020(00)00965-0 es_ES
dc.description.references Sartori, G. (2004). Catalytic activity of aminopropyl xerogels in the selective synthesis of (E)-nitrostyrenes from nitroalkanes and aromatic aldehydes. Journal of Catalysis, 222(2), 410-418. doi:10.1016/j.jcat.2003.11.016 es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084 es_ES
dc.description.references Hara, T., Kanai, S., Mori, K., Mizugaki, T., Ebitani, K., Jitsukawa, K., & Kaneda, K. (2006). Highly Efficient C−C Bond-Forming Reactions in Aqueous Media Catalyzed by Monomeric Vanadate Species in an Apatite Framework. The Journal of Organic Chemistry, 71(19), 7455-7462. doi:10.1021/jo0614745 es_ES
dc.description.references Poe, S. L., Kobašlija, M., & McQuade, D. T. (2006). Microcapsule Enabled Multicatalyst System. Journal of the American Chemical Society, 128(49), 15586-15587. doi:10.1021/ja066476l es_ES
dc.description.references Motokura, K., Tada, M., & Iwasawa, Y. (2008). Cooperative Catalysis of Primary and Tertiary Amines Immobilized on Oxide Surfaces for One-Pot CC Bond Forming Reactions. Angewandte Chemie, 120(48), 9370-9375. doi:10.1002/ange.200802515 es_ES
dc.description.references Sharma, K. K., & Asefa, T. (2007). Efficient Bifunctional Nanocatalysts by Simple Postgrafting of Spatially Isolated Catalytic Groups on Mesoporous Materials. Angewandte Chemie, 119(16), 2937-2940. doi:10.1002/ange.200604570 es_ES
dc.description.references Xie, Y., Sharma, K. K., Anan, A., Wang, G., Biradar, A. V., & Asefa, T. (2009). Efficient solid-base catalysts for aldol reaction by optimizing the density and type of organoamine groups on nanoporous silica. Journal of Catalysis, 265(2), 131-140. doi:10.1016/j.jcat.2009.04.018 es_ES
dc.description.references Anan, A., Sharma, K. K., & Asefa, T. (2008). Selective, efficient nanoporous catalysts for nitroaldol condensation: Co-placement of multiple site-isolated functional groups on mesoporous materials. Journal of Molecular Catalysis A: Chemical, 288(1-2), 1-13. doi:10.1016/j.molcata.2008.03.027 es_ES
dc.description.references Wang, Q., & Shantz, D. F. (2010). Nitroaldol reactions catalyzed by amine-MCM-41 hybrids. Journal of Catalysis, 271(2), 170-177. doi:10.1016/j.jcat.2010.01.010 es_ES
dc.description.references Ballesteros, J. F., Sanz, M. J., Ubeda, A., Miranda, M. A., Iborra, S., Paya, M., & Alcaraz, M. J. (1995). Synthesis and Pharmacological Evaluation of 2’-Hydroxychalcones and Flavones as Inhibitors of Inflammatory Mediators Generation. Journal of Medicinal Chemistry, 38(14), 2794-2797. doi:10.1021/jm00014a032 es_ES
dc.description.references Wattenberg, L. W., Coccia, J. B., & Galbraith, A. R. (1994). Inhibition of carcinogen-induced pulmonary and mammary carcinogenesis by chalcone administered subsequent to carcinogen exposure. Cancer Letters, 83(1-2), 165-169. doi:10.1016/0304-3835(94)90314-x es_ES
dc.description.references Dinkova-Kostova, A. T., Abeygunawardana, C., & Talalay, P. (1998). Chemoprotective Properties of Phenylpropenoids, Bis(benzylidene)cycloalkanones, and Related Michael Reaction Acceptors:  Correlation of Potencies as Phase 2 Enzyme Inducers and Radical Scavengers†. Journal of Medicinal Chemistry, 41(26), 5287-5296. doi:10.1021/jm980424s es_ES
dc.description.references Novak, M., & Loudon, G. M. (1977). The pKa of acetophenone in aqueous solution. The Journal of Organic Chemistry, 42(14), 2494-2498. doi:10.1021/jo00434a032 es_ES
dc.description.references Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:10.1351/pac198557040603 es_ES
dc.description.references Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem