- -

Lead ion adsorption from aqueous solutions in modified Algerian montmorillonites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Lead ion adsorption from aqueous solutions in modified Algerian montmorillonites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zehhaf, A. es_ES
dc.contributor.author Benyoucef, A. es_ES
dc.contributor.author Berenguer, R. es_ES
dc.contributor.author Quijada Tomás, Cesar es_ES
dc.contributor.author Taleb, S. es_ES
dc.contributor.author Morallon, E. es_ES
dc.date.accessioned 2015-06-02T15:50:37Z
dc.date.available 2015-06-02T15:50:37Z
dc.date.issued 2012-12
dc.identifier.issn 1388-6150
dc.identifier.uri http://hdl.handle.net/10251/51148
dc.description.abstract The adsorption of lead (II) ions on three Algerian montmorillonites (sodium, non-sodium, and acidic-activated) was studied. Transmission electron microscopy coupled with energy dispersive X-ray analysis, X-ray fluorescence and physical adsorption of gases were used to characterize the clays. This characterization has shown than the activation with acid increases the surface area as a consequence of the rupture of the laminar structure. The effect of the pH in the lead adsorption capacity was analyzed. The results show that adsorption is strongly depended on the pH. At low pH values, the mechanism that governs the adsorption behavior of clays is the competition of the metal ions with protons. Between pH 2 and 6, the main mechanism is an ion exchange process. The kinetics of the adsorption is tested with respect to pseudo-first-order and second-order models. The adsorption process, gives a better fit with the Langmuir isotherm, being the monolayer capacity ranging between 18.2 and 24.4 mg g(-1). The adsorption of lead decreased in the order Acidic-M-2 > M-2 > M-1. Thermodynamic parameters such as Delta H, Delta S, and Delta G were calculated. The adsorption process was found to be endothermic and spontaneous. The enthalpy change for Pb(II) by M-1 adsorption has been estimated as 60 kJ mol(-1), indicating that the adsorption of Pb(II) by all montmorillonites used corresponds to a physical reaction. The adsorption capacity of washed Acidic-M-2 was very high compared to M-2 and M-1. es_ES
dc.description.sponsorship This study has been financed by the AECID (projects AECID-PCI A/019533/08 and A/023858/09) and Ministerio de Ciencia e Innovacion (project MAT2010-15273). The National Agency for the Development of University Research (CRSTRA), the Directorate General of Scientific Research and Technological Development (DGRSDT) of Algeria. en_EN
dc.language Inglés es_ES
dc.publisher Akadémiai Kiadó es_ES
dc.relation.ispartof Journal of Thermal Analysis and Calorimetry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Adsorption es_ES
dc.subject Clay es_ES
dc.subject Ion exchange es_ES
dc.subject Lead es_ES
dc.subject Montmorillonite es_ES
dc.subject Adsorption behavior es_ES
dc.subject Adsorption capacities es_ES
dc.subject Adsorption of pb es_ES
dc.subject Adsorption process es_ES
dc.subject Energy dispersive x-ray es_ES
dc.subject Enthalpy change es_ES
dc.subject Ion exchange process es_ES
dc.subject Laminar structure es_ES
dc.subject Langmuir isotherm es_ES
dc.subject Lead adsorption es_ES
dc.subject Lead ions es_ES
dc.subject Monolayer capacity es_ES
dc.subject PH value es_ES
dc.subject Physical adsorption es_ES
dc.subject Pseudo-first-order es_ES
dc.subject Second-order models es_ES
dc.subject Surface area es_ES
dc.subject Thermodynamic parameter es_ES
dc.subject X ray fluorescence es_ES
dc.subject Clay minerals es_ES
dc.subject Metal ions es_ES
dc.subject Monolayers es_ES
dc.subject Transmission electron microscopy es_ES
dc.subject.classification QUIMICA FISICA es_ES
dc.title Lead ion adsorption from aqueous solutions in modified Algerian montmorillonites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10973-011-2021-8
dc.relation.projectID info:eu-repo/grantAgreement/MAEC//A%2F023858%2F09/ES/ESTUDIO DE LA ELECTROADSORCIÓN DE METALES TÓXICOS EN AGUAS RESIDUALES SOBRE DIFERENTES ADSORBENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MAEC//A%2F019533%2F08/ES/ESTUDIO DE LA ELECTROADSORCIÓN DE METALES TÓXICOS EN AGUAS RESIDUALES SOBRE DIFERENTES ADSORBENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-15273/ES/ELECTRODOS NANOESTRUCTURADOS PARA APLICACIONES EN SENSORES ELECTROQUIMICOS Y SUPERCONDENSADORES/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera es_ES
dc.description.bibliographicCitation Zehhaf, A.; Benyoucef, A.; Berenguer, R.; Quijada Tomás, C.; Taleb, S.; Morallon, E. (2012). Lead ion adsorption from aqueous solutions in modified Algerian montmorillonites. Journal of Thermal Analysis and Calorimetry. 110(3):1069-1077. https://doi.org/10.1007/s10973-011-2021-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10973-011-2021-8 es_ES
dc.description.upvformatpinicio 1069 es_ES
dc.description.upvformatpfin 1077 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 110 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 231021
dc.identifier.eissn 1572-8943
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Asuntos Exteriores y Cooperación es_ES
dc.description.references Patterson JW. Industrial wastewater treatment technology. New York: Butterworth-Heinemann; 1985. es_ES
dc.description.references Adebowale KO, Unuabonah IE, Olu-Owolabi BI. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J Hazard Mat. 2006;34:130–9. es_ES
dc.description.references Vogel C, Adam C, Unger M. Heavy metal removal from sewage sludge ash analyzed be thermogravimetry. J Therm Anal Calorim. 2011;103:243–8. es_ES
dc.description.references Adebowale KO, Unuabonah IE, Olu-Owolabi BI. Kinetic and thermodynamic aspects of the adsorption of Pb2+ and Cd2+ ions on tripolyphosphate-modified kaolinite clay. Chem Eng. J. 2008;136:99–107. es_ES
dc.description.references Arfaoui S, Frini-Srasra N, Srasra E. Application of clays to treatment of tannery sewages. Desalination. 2005;185:419–24. es_ES
dc.description.references Sakizci M, Alver BE, Yörükoğullari E. Termal and SO2 adsorption properties of some clays from Turkey. J Therm Anal Calorim. 2011;103:435–41. es_ES
dc.description.references Celis R, Hermosín MC, Cornejo J. Heavy metal adsorption by functionalized clays. Environ Sci Technol. 2000;34:4593–9. es_ES
dc.description.references Molina R, Vieiera-Coelho A, Poncelet G. Hydroxy-Al pillaring of concentrated clay suspensions. Clay Clay Miner. 1992;40:480–2. es_ES
dc.description.references Oubagaranadin JUK, Murthy ZVP. Adsorption of divalent lead on a montmorillonite-illite type of clay. Ind Eng Chem Res. 2009;48:10627–36. es_ES
dc.description.references Singh SP, Ma LQ, Hendry MJ. Characterization of aqueous lead removal by phosphatic clay: equilibrium and kinetic studies. J. Hazard Mater. 2006;136:654–62. es_ES
dc.description.references Mahbouba R, El Mouzdahir Y, Elmchaouri A, Carvalho A, Pinto M, Pires J. Characterization of a delaminated clay and pillared clays bynadsorption of probe molecules. Colloids Surf A. 2006;280:81–7. es_ES
dc.description.references Gok ASzcan, zcan A. Adsorption of lead(II) ions onto 8-hydroxy quinoline-immobilized bentonite. J. Hazard Mater. 2009;161:499–509. es_ES
dc.description.references Schoonheydt RA, Pinnavaia T, Lagaly G, Gangas N. Pillared clays and pillared layered solids. Pure Appl Chem. 1999;71:2367–71. es_ES
dc.description.references Stoch L, Bahranowski K, Budek L, Fijal J. Mineral Pol. 1977;8:31–7. es_ES
dc.description.references Srivastava SK, Tyagi R, Pant N, Pal N. Studies on the removal of some toxic metal ions, Part II. Removal of lead and cadmium by montmorillonite and kaolinite. Environ Technol Let. 1989;10:275–82. es_ES
dc.description.references Orumwense FFO. Removal of lead from water by adsorption on a kaolinitic clay. J Chem Technol Biotechnol. 1996;65:363–9. es_ES
dc.description.references Chantawong V, Harvey NW, Bashkin VN. Adsorption of lead nitrate on Thai kaolin and ballclay. Asian J Energy Environ. 2001;2:33–48. es_ES
dc.description.references Lapides I, Yari S. Thermo-X-ray-diffraction analysis of dimethylsulfoxide-kaolinite intercalation complexes. J Therm Anal Calorim. 2009;97:2–19. es_ES
dc.description.references Echeverría JC, Zarranz I, Estella J, Garrido JJ. Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of lead on illite. Appl Clay Sci. 2005;30:103–15. es_ES
dc.description.references Naseem R, Tahir SS. Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Res. 2001;35:3982–6. es_ES
dc.description.references Donat R, Akdogan A, Erdem E, Cetisli H. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. J Colloid Interface Sci. 2005;286:43–52. es_ES
dc.description.references Cicmanec P, Bulánek R, Frolich K. Thermodynamics of CO probe molecule adsorption on Cu–FER-zeolite comparison of TPD, FTIR, and microcalorimetry results. J Therm Anal Calorim. 2011;105:837–84. es_ES
dc.description.references Zamzow MJ, Eichbaum BR, Sandgren KR, Shanks DE. Removal of heavy metals and other cations from wastewater using zeolites. Sep Sci Technol. 1990;25:1555–69. es_ES
dc.description.references Ouki SK, Cheeseman C, Perry R. Effects of conditioning and treatment of chabazite and clinoptilolite prior to lead and cadmium removal. Environ Sci Technol. 1993;27:1108–16. es_ES
dc.description.references Brigatti MF, Lugli C, Poppi L. Kinetics of heavy-metal removal and recovery in sepiolite. Appl Clay Sci. 2000;16:45–57. es_ES
dc.description.references Bektas N, Agım BA, Kara S. Kinetic and equilibrium studies in removing lead ions from aqueous solutions by natural sepiolite. J Hazard Mat. 2004;112:115–22. es_ES
dc.description.references Juang RS, Lin SH, Tsao KH. Mechanism of sorption of phenols from aqueous solutions onto surfactant-modified montmorillonite. J Colloid Interface Sci. 2002;254:234–41. es_ES
dc.description.references Alberga L, Holm T, Tiravanti G, Petruzzelli D. Electrochemical determination of cadmium sorption on kaolinite. Environ Technol. 1994;15:245–54. es_ES
dc.description.references Tiller KG, Gerth J, Brümmer G. The sorption of Cd, Zn and Ni by soil clay fractions: procedures for partition of bound forms and their interpretation. Geoderma. 1984;34:1–16. es_ES
dc.description.references Stadler M, Schindler PW. The effect of dissolved ligands upon the sorption of Cu(II) by Ca-montmorillonite. Clays Clay Miner. 1993;41:680–92. es_ES
dc.description.references Belbachir M, Bensaoula A. US Patent 2001;No. 6, 274, 527 B1. es_ES
dc.description.references Lozano-Castelló D, Suárez-García F, Cazorla-Amorós D, Linares-Solano A. Porous texture of carbons. In: Beguin F, Frackowiak E, editors. Carbons for electrochemical energy storage and conversion systems. Florida: CRC Press; 2009. p. 115–62. es_ES
dc.description.references Cazorla-Amorós D, Alcañiz-Monge J, Linares-Solano A. Characterization of activated carbon fibers by CO2 adsorption. Langmuir. 1996;12:2820–4. es_ES
dc.description.references Cazorla-Amorós D, Alcañiz-Monge J, de la Casa-Lillo MA, Linares-Solano A. CO2 as an adsorptive to characterize carbon molecular sieves and activated carbons. Langmuir. 1998;14:4589–96. es_ES
dc.description.references Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF. Adsorption and desorption of different organic matter fractions on iron oxide. Geochim Cosmochim Acta. 1995;59:219–29. es_ES
dc.description.references Kul AR, Koyunchu H. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment. J. Hazard Mater. 2010;179:332–9. es_ES
dc.description.references Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451–65. es_ES
dc.description.references Sing K, Everet D, Haul R, Moscou L, Pierotty R, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57:603–19. es_ES
dc.description.references Temuulin J, Jadambaa Ts, Burmaa G, Erdenechimeg Sh, Amarsanaa J, MacKenzie KJD. Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceram Int. 2004;30:251–5. es_ES
dc.description.references Noyan H, Onal M, Sarikaya Y. The effect of sulphuric acid activation on the crystallinity, surface area, porosity, surface acidity, and bleaching power of a bentonite. Food Chem. 2007;105:156–63. es_ES
dc.description.references Huang FC, Lee FJ, Lee CK, Chao HP. Effects of cation exchange on the pore and surface structure and adsorption characteristics of montmorillonite. Colloid Surf A. 2004;239:41–7. es_ES
dc.description.references Treybal RE. Mass-transfer operation, 3rd ed. Tokyo: McGraw-Hill; 1981. es_ES
dc.description.references Elliot HA, Huang CP. Adsorption characteristics of some Cu(II) complexes on aluminosilicates. Water Res. 1981;15:849–55. es_ES
dc.description.references Unuabonah EI, Adebowale KO, Olu-Owolabi BI, Yang LZ, Kong LX. Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified Kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy. 2008;93:1–9. es_ES
dc.description.references Volesky B, Holan ZR. Biosorption of heavy metals. Biotechnol Prog. 1995;11:235–50. es_ES
dc.description.references Adebowale KO, Unuabonah IE, Olu-Owolabi BI. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J Hazard Mater. 2006;134:130–9. es_ES
dc.description.references Jiang M, Jin X, Lu X, Chen Z. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination. 2010;252:33–9. es_ES
dc.description.references Hefne JA, Mekhemer WK, Alandis NM, Aldayel OA, Alajyan T. Kinetic and thermodynamic study of the adsorption of Pb(II) from aqueous solution to the natural and treated bentonite. Int J Phys Sci. 2008;3:281–8. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem