Mostrar el registro sencillo del ítem
dc.contributor.author | Cortell Bataller, Rafael | es_ES |
dc.date.accessioned | 2015-06-02T17:39:59Z | |
dc.date.available | 2015-06-02T17:39:59Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0025-6455 | |
dc.identifier.uri | http://hdl.handle.net/10251/51153 | |
dc.description.abstract | An analysis is presented for the steady non-linear viscous flow of an incompressible viscous fluid over a horizontal surface of variable temperature with a power-law velocity under the influences of suction/blowing, viscous dissipation and thermal radiation. Numerical results are illustrated by means of tables and graphs. The governing partial differential equations are converted into nonlinear ordinary differential equations by a similarity transformation. The effects of the stretching parameter n, suction/blowing parameter b, Prandtl number ¿, Eckert number E c(E c *) and radiation parameter N R are discussed. Two cases are studied, namely, (i) Prescribed surface temperature (PST case) and, (ii) Prescribed heat flux at the sheet (PHF case). © 2011 Springer Science+Business Media B.V. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Meccanica | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Laminar boundary layers | es_ES |
dc.subject | Non-linearly stretching surfaces | es_ES |
dc.subject | Suction/injection | es_ES |
dc.subject | Thermal radiation | es_ES |
dc.subject | Viscous dissipation | es_ES |
dc.subject | Combined effect | es_ES |
dc.subject | Eckert numbers | es_ES |
dc.subject | Horizontal surfaces | es_ES |
dc.subject | Incompressible viscous fluids | es_ES |
dc.subject | Nonlinear ordinary differential equation | es_ES |
dc.subject | Numerical results | es_ES |
dc.subject | Permeable wall | es_ES |
dc.subject | Power-law | es_ES |
dc.subject | Prescribed heat fluxes | es_ES |
dc.subject | Prescribed surface temperatures | es_ES |
dc.subject | Radiation parameters | es_ES |
dc.subject | Similarity transformation | es_ES |
dc.subject | Stretching parameters | es_ES |
dc.subject | Suction/blowing | es_ES |
dc.subject | Thermal radiations | es_ES |
dc.subject | Variable temperature | es_ES |
dc.subject | Forced convection | es_ES |
dc.subject | Heat flux | es_ES |
dc.subject | Heat radiation | es_ES |
dc.subject | Laminar boundary layer | es_ES |
dc.subject | Ordinary differential equations | es_ES |
dc.subject | Partial differential equations | es_ES |
dc.subject | Viscous flow | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Combined effect of viscous dissipation and thermal radiation on fluid flows over a non-linearly stretched permeable wall | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11012-011-9488-z | |
dc.rights.accessRights | Cerrado | es_ES |
dc.description.bibliographicCitation | Cortell Bataller, R. (2012). Combined effect of viscous dissipation and thermal radiation on fluid flows over a non-linearly stretched permeable wall. Meccanica. 47(3):769-781. doi:10.1007/s11012-011-9488-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11012-011-9488-z | es_ES |
dc.description.upvformatpinicio | 769 | es_ES |
dc.description.upvformatpfin | 781 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 47 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 207294 | |
dc.description.references | Sakiadis BC (1961) Boundary-layer behaviour on continuous solid surfaces. AIChE J 7:26–28 | es_ES |
dc.description.references | Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys 21:645–647 | es_ES |
dc.description.references | Chakrabarti A, Gupta AS (1979) Hydromagnetic flow and heat transfer over a stretching sheet. Q Appl Math 33:73–78 | es_ES |
dc.description.references | Carragher P, Crane LJ (1982) Heat transfer on a continuous stretching sheet. Z Angew Math Mech 62:564–565 | es_ES |
dc.description.references | Gupta PS, Gupta AS (1977) Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng 55:744–746 | es_ES |
dc.description.references | Danberg JE, Fansler KS (1976) A non-similar moving wall boundary-layer problem. Q Appl Math 34:305–309 | es_ES |
dc.description.references | Cortell R (2005) Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dyn Res 37(4):231–245 | es_ES |
dc.description.references | Yih KA (1998) The effect of uniform suction/blowing on heat transfer of magnetohydrodynamic Hiemenz flow through porous media. Acta Mech 130:147–158 | es_ES |
dc.description.references | Gorla RSR, Sidawi I (1994) Free convection on a vertical stretching surface with suction or blowing. Appl Sci Res 52:247–257 | es_ES |
dc.description.references | Badruddin IA, Zainal ZA, Narayana PAA, Seetharamu KN, Siew LW (2006) Free convection and radiation characteristics for a vertical plate embedded in a porous medium. Int J Numer Methods Eng 65:2265–2278 | es_ES |
dc.description.references | Labropolu F, Dorrepaal JM, Chandna OP (1993) Viscoelastic fluid flow impinging on a wall with suction or blowing. Mech Res Commun 20:143–153 | es_ES |
dc.description.references | Gupta AS, Misra JC, Reza M (2003) Effects of suction or blowing on the velocity and temperature distribution in the flow past a porous flat plate of a power-law fluid. Fluid Dyn Res 32:283–294 | es_ES |
dc.description.references | Ishak A, Nazar R, Pop I (2008) Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transf 44:921–927 | es_ES |
dc.description.references | Ishak A, Nazar R, Pop I (2006) Magnetohydrodynamic stagnation-point flow towards a stretching vertical sheet. Magnetohydrodynamics 42:17–30 | es_ES |
dc.description.references | Cortell R (2005) A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Appl Math Comput 168:557–566 | es_ES |
dc.description.references | Cortell R (1994) Similarity solutions for flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int J Non-Linear Mech 29:155–161 | es_ES |
dc.description.references | Kelly D, Vajravelu K, Andrews L (1999) Analysis of heat and mass transfer of a viscoelastic, electrically conducting fluid past a continuous stretching sheet. Nonlinear Anal 36:767–784 | es_ES |
dc.description.references | Vajravelu K, Rollings D (2004) Hydromagnetic flow of a second grade fluid over a stretching sheet. Appl Math Comput 148:783–791 | es_ES |
dc.description.references | Cortell R (2006) MHD boundary-layer flow and heat transfer of a non-Newtonian power-law fluid past a moving plate with thermal radiation. Nuovo Cimento B 121:951–964 | es_ES |
dc.description.references | Massoudi M, Maneschy CE (2004) Numerical solution to the flow of a second grade fluid over a stretching sheet using the method of quasi-linearization. Appl Math Comput 149:165–173 | es_ES |
dc.description.references | Cortell R (2007) Effects of heat source/sink, radiation and work done by deformation on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Comput Math Appl 53:305–316 | es_ES |
dc.description.references | Liu I-Ch (2005) Flow and heat transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet subject to a transverse magnetic field. Int J Non-Linear Mech 40:465–474 | es_ES |
dc.description.references | Cortell R (2007) Viscoelastic fluid flow and heat transfer over a stretching sheet under the effects of a non-uniform heat source, viscous dissipation and thermal radiation. Int J Heat Mass Transf 50:3152–3162 | es_ES |
dc.description.references | Cortell R (2006) A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int J Non-Linear Mech 41:78–85 | es_ES |
dc.description.references | Cortell R (2006) Flow and heat transfer of an electrically conducting fluid of second grade over a stretching sheet subject to suction and to a transverse magnetic field. Int J Heat Mass Transf 49:1851–1856 | es_ES |
dc.description.references | Cortell R (2006) Effects of viscous dissipation and work done by deformation on the MHD flow and heat transfer of a viscoelastic fluid over a stretching sheet. Phys Lett A 357:298–305 | es_ES |
dc.description.references | Cortell R (2011) Suction, viscous dissipation and thermal radiation effects on the flow and heat transfer of a power-law fluid past an infinite porous plate. Chem Eng Res Des 89:85–93 | es_ES |
dc.description.references | Cortell R (2010) On a certain boundary value problem arising in shrinking sheet flows. Appl Math Comput 217:4086–4093 | es_ES |
dc.description.references | Ishak A (2010) Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. Meccanica 45:367–373 | es_ES |
dc.description.references | Ishak A, Yacob NA, Bachok N (2010) Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition. Meccanica in press. doi: 10.1007/s11012-010-9338-4 | es_ES |
dc.description.references | Cortell R (2010) Internal heat generation and radiation effects on a certain free convection flow. Int J Nonlinear Sci 9:468–479 | es_ES |
dc.description.references | Kumaran V, Ramanaiah G (1996) A note on the flow over a stretching sheet. Acta Mech 116:229–233 | es_ES |
dc.description.references | Elbashbeshy EMA (2001) Heat transfer over an exponentially stretching continuous surface with suction. Arch Mech 53:643–651 | es_ES |
dc.description.references | Sajid M, Hayat T, Asghar S, Vajravelu K (2008) Analytic solution for axisymmetric flow over a nonlinearly stretching sheet. Arch Appl Mech 78:127–134 | es_ES |
dc.description.references | Anjali Devi SP, Thiyagarajan M (2006) Steady non-linear hydromagnetic flow and heat transfer over a stretching surface of variable temperature. Heat Mass Transf 42:671–677 | es_ES |
dc.description.references | Vajravelu K (2001) Viscous flow over a nonlinearly stretching sheet. Appl Math Comput 124:281–288 | es_ES |
dc.description.references | Cortell R (2007) Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl Math Comput 184:864–873 | es_ES |
dc.description.references | Cortell R (2008) Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Phys Lett A 372:631–636 | es_ES |
dc.description.references | Abbas Z, Hayat T (2008) Radiation effects on MHD flow in a porous space. Int J Heat Mass Transf 51:1024–1033 | es_ES |
dc.description.references | Hayat T, Abbas Z, Javed T (2008) Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet. Phys Lett A 372:637–647 | es_ES |
dc.description.references | Akyildiz FT, Siginer DA (2010) Galerkin-Legendre spectral method for the velocity and thermal boundary layer over a non-linearly stretching sheet. Nonlinear Anal, Real World Appl 11:735–741 | es_ES |
dc.description.references | Van Gorder RA, Vajravelu K (2010) A note on flow geometries and the similarity solutions of the boundary layer equations for a nonlinearly stretching sheet. Arch Appl Mech 80:1329–1332 | es_ES |
dc.description.references | Van Gorder RA, Vajravelu K, Akyildiz FT (2011) Existence and uniqueness results for a nonlinear differential equation arising in viscous flow over a nonlinearly stretching sheet. Appl Math Lett 24(2):238–242 | es_ES |
dc.description.references | Brewster MQ (1972) Thermal Radiative Transfer Properties. Wiley, New York | es_ES |
dc.description.references | Raptis A, Perdikis C, Takhar HS (2004) Effect of thermal radiation on MHD flow. Appl Math Comput 153:645–649 | es_ES |
dc.description.references | Cortell R (2008) Similarity solutions for boundary layer flow and heat transfer of a FENE-P fluid with thermal radiation. Phys Lett A 372:2431–2439 | es_ES |
dc.description.references | Van Gorder RA, Vajravelu K (2010) A general class of coupled nonlinear differential equations arising in self-similar solutions of convective heat transfer problems. Appl Math Comput 217:460–465 | es_ES |