Mostrar el registro sencillo del ítem
dc.contributor.author | Cortés López, Juan Carlos | es_ES |
dc.contributor.author | Romero Bauset, José Vicente | es_ES |
dc.contributor.author | Roselló Ferragud, María Dolores | es_ES |
dc.contributor.author | Villanueva Micó, Rafael Jacinto | es_ES |
dc.date.accessioned | 2015-06-03T10:39:30Z | |
dc.date.available | 2015-06-03T10:39:30Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.uri | http://hdl.handle.net/10251/51207 | |
dc.description.abstract | The consideration of uncertainty in differential equations leads to the emergent area of random differential equations. Under this approach, inputs become random variables and/or stochastic processes. Often one assumes that inputs are independent, a hypothesis that simplifies the mathematical treatment although it could not bemet in applications. In this paper,we analyse, through the Airy equation, the influence of statistical dependence of inputs on the output, computing its expectation and standard deviation by Fröbenius and Polynomial Chaos methods.The results are compared with Monte Carlo sampling. The analysis is conducted by the Airy equation since, as in the deterministic scenario its solutions are highly oscillatory, it is expected that differences will be better highlighted. To illustrate our study, and motivated by the ubiquity of Gaussian random variables in numerous practical problems, we assume that inputs follow a multivariate Gaussian distribution throughout the paper. The application of Fröbenius method to solve Airy equation is based on an extension of the method to the case where inputs are dependent. The numerical results show that the existence of statistical dependence among the inputs and its magnitude entails changes on the variability of the output. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Ministerio de Economia y Competitividad Grants MTM2009-08587 and DPI2010-20891-C02-01 and Universitat Politecnica de Valencia Grant PAID06-11-2070. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Abstract and Applied Analysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Differential equations | es_ES |
dc.subject | Polynomial chaos | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Dealing with dependent uncertainty in modelling : a comparative study case through the airy equation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2013/279642 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20891-C02-01/ES/MODELIZACION Y METODOS NUMERICOS, ALEATORIOS Y DETERMINISTAS, PARA EL FILTRADO DE PARTICULAS DIESEL EN MOTORES DE COMBUSTION INTERNA SOBREALIMENTADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-11-2070/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2009-08587/ES/Ecuaciones Diferenciales Aleatorias Y Aplicaciones/ / | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cortés López, JC.; Romero Bauset, JV.; Roselló Ferragud, MD.; Villanueva Micó, RJ. (2013). Dealing with dependent uncertainty in modelling : a comparative study case through the airy equation. Abstract and Applied Analysis. 2013(2796):1-12. https://doi.org/10.1155/2013/279642 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.hindawi.com/journals/aaa/2013/279642/ | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2013 | es_ES |
dc.description.issue | 2796 | es_ES |
dc.relation.senia | 251634 | |
dc.identifier.eissn | 1687-0409 | |
dc.contributor.funder | MInisterio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Xiu, D., & Karniadakis, G. E. (2002). The Wiener--Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing, 24(2), 619-644. doi:10.1137/s1064827501387826 | es_ES |
dc.description.references | Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061 | es_ES |
dc.description.references | Cortés, J. C., Jódar, L., & Villafuerte, L. (2010). Numerical solution of random differential initial value problems: Multistep methods. Mathematical Methods in the Applied Sciences, 34(1), 63-75. doi:10.1002/mma.1331 | es_ES |
dc.description.references | Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046 | es_ES |
dc.description.references | Calbo, G., Cortés, J.-C., & Jódar, L. (2011). Random Hermite differential equations: Mean square power series solutions and statistical properties. Applied Mathematics and Computation, 218(7), 3654-3666. doi:10.1016/j.amc.2011.09.008 | es_ES |
dc.description.references | Soize, C., & Ghanem, R. (2004). Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure. SIAM Journal on Scientific Computing, 26(2), 395-410. doi:10.1137/s1064827503424505 | es_ES |
dc.description.references | Wan, X., & Karniadakis, G. E. (2006). Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures. SIAM Journal on Scientific Computing, 28(3), 901-928. doi:10.1137/050627630 | es_ES |
dc.description.references | Iserles, A. (2002). Think globally, act locally: Solving highly-oscillatory ordinary differential equations. Applied Numerical Mathematics, 43(1-2), 145-160. doi:10.1016/s0168-9274(02)00122-8 | es_ES |