Mostrar el registro sencillo del ítem
dc.contributor.author | Jorda Mora, Enrique | es_ES |
dc.date.accessioned | 2015-06-03T11:57:58Z | |
dc.date.available | 2015-06-03T11:57:58Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.uri | http://hdl.handle.net/10251/51214 | |
dc.description.abstract | We study the weighted Banach spaces of vector-valued holomorphic functions defined on an open and connected subset of a Banach space. We use linearization results on these spaces to get conditions which ensure that a function f defined in a subset A of an open and connected subset U of a Banach space X, with values in another Banach space X, and admitting certain weak extensions in a Banach space of holomorphic functions can be holomorphically extended in the corresponding Banach space of vector-valued functions. | es_ES |
dc.description.sponsorship | The author wants to thank J. Bonet for several references, discussions, and ideas provided, which were very helpful and in particular allowed him to prove Theorem 7, Proposition 8, and Examples 15 and 16. Remark 4 is due to him. The participation of M. J. Beltran in a lot of discussions during all the work has also been very important. Her ideas are also reflected in the paper. The author is also indebted to L. Frerick and J. Wengenroth for communicating to him Lemma 2. The remarks and corrections of the referee have been also really helpful to the final version. The author thanks him/her for that. This research was partially supported by MEC and FEDER Project MTM2010-15200, GV Project ACOMP/2012/090, and Programa de Apoyo a la Investigacin y Desarrollo de la UPV PAID-06-12. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Abstract and Applied Analysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Injective tensor product | es_ES |
dc.subject | Composition operators | es_ES |
dc.subject | Infinite dimensions | es_ES |
dc.subject | Analytic function | es_ES |
dc.subject | Harmonic funcions | es_ES |
dc.subject | Linearization | es_ES |
dc.subject | Extension | es_ES |
dc.subject | Mappings | es_ES |
dc.subject | Continuation | es_ES |
dc.subject | Boundaries | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Weighted vector-valued holomorphic functions on Banach spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2013/501592 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-15200/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS MATEMATICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F090/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-12/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Jorda Mora, E. (2013). Weighted vector-valued holomorphic functions on Banach spaces. Abstract and Applied Analysis. 2013:1-9. https://doi.org/10.1155/2013/501592 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2013/501592 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2013 | es_ES |
dc.relation.senia | 251764 | |
dc.identifier.eissn | 1687-0409 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Dunford, N. (1938). Uniformity in Linear Spaces. Transactions of the American Mathematical Society, 44(2), 305. doi:10.2307/1989974 | es_ES |
dc.description.references | Bogdanowicz, W. M. (1969). Analytic continuation of holomorphic functions with values in a locally convex space. Proceedings of the American Mathematical Society, 22(3), 660-660. doi:10.1090/s0002-9939-1969-0250067-1 | es_ES |
dc.description.references | Arendt, W., & Nikolski, N. (2000). Vector-valued holomorphic functions revisited. Mathematische Zeitschrift, 234(4), 777-805. doi:10.1007/s002090050008 | es_ES |
dc.description.references | Bonet, J., Frerick, L., & Jordá, E. (2007). Extension of vector-valued holomorphic and harmonic functions. Studia Mathematica, 183(3), 225-248. doi:10.4064/sm183-3-2 | es_ES |
dc.description.references | Frerick, L., Jordá, E., & Wengenroth, J. (2009). Extension of bounded vector-valued functions. Mathematische Nachrichten, 282(5), 690-696. doi:10.1002/mana.200610764 | es_ES |
dc.description.references | GROSSE-ERDMANN, K.-G. (2004). A weak criterion for vector-valued holomorphy. Mathematical Proceedings of the Cambridge Philosophical Society, 136(2), 399-411. doi:10.1017/s0305004103007254 | es_ES |
dc.description.references | Laitila, J., & Tylli, H.-O. (2006). Composition operators on vector-valued harmonic functions and Cauchy transforms. Indiana University Mathematics Journal, 55(2), 719-746. doi:10.1512/iumj.2006.55.2785 | es_ES |
dc.description.references | Beltrán, M. J. (2011). Linearization of weighted (LB)-spaces of entire functions on Banach spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 106(2), 275-286. doi:10.1007/s13398-011-0049-z | es_ES |
dc.description.references | Carando, D., & Zalduendo, I. (2004). Linearization of functions. Mathematische Annalen, 328(4), 683-700. doi:10.1007/s00208-003-0502-1 | es_ES |
dc.description.references | Mujica, J. (1991). Linearization of Bounded Holomorphic Mappings on Banach Spaces. Transactions of the American Mathematical Society, 324(2), 867. doi:10.2307/2001745 | es_ES |
dc.description.references | Fabian, M., Habala, P., Hájek, P., Montesinos, V., & Zizler, V. (2011). Banach Space Theory. CMS Books in Mathematics. doi:10.1007/978-1-4419-7515-7 | es_ES |
dc.description.references | Dineen, S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. doi:10.1007/978-1-4471-0869-6 | es_ES |
dc.description.references | Boyd, C., & Lassalle, S. (2009). GEOMETRY AND ANALYTIC BOUNDARIES OF MARCINKIEWICZ SEQUENCE SPACES. The Quarterly Journal of Mathematics, 61(2), 183-197. doi:10.1093/qmath/han037 | es_ES |
dc.description.references | Globevnik, J. (1978). On interpolation by analytic maps in infinite dimensions. Mathematical Proceedings of the Cambridge Philosophical Society, 83(2), 243-252. doi:10.1017/s0305004100054505 | es_ES |
dc.description.references | Globevnik, J. (1979). Boundaries for polydisc algebras in infinite dimensions. Mathematical Proceedings of the Cambridge Philosophical Society, 85(2), 291-303. doi:10.1017/s0305004100055705 | es_ES |
dc.description.references | Seip, K. (1993). Beurling type density theorems in the unit disk. Inventiones Mathematicae, 113(1), 21-39. doi:10.1007/bf01244300 | es_ES |
dc.description.references | Ng, K. (1971). On a Theorem of Dixmier. MATHEMATICA SCANDINAVICA, 29, 279. doi:10.7146/math.scand.a-11054 | es_ES |
dc.description.references | Bochnak, J., & Siciak, J. (1971). Polynomials and multilinear mappings in topological vector-spaces. Studia Mathematica, 39(1), 59-76. doi:10.4064/sm-39-1-59-76 | es_ES |
dc.description.references | Gramsch, B. (1977). Ein Schwach-Stark-Prinzip der Dualit�tstheorie lokalkonvexer R�ume als Fortsetzungsmethode. Mathematische Zeitschrift, 156(3), 217-230. doi:10.1007/bf01214410 | es_ES |
dc.description.references | Bonet, J., Gómez-Collado, M. C., Jornet, D., & Wolf, E. (2012). Operator-weighted composition operators between weighted spaces of vector-valued analytic functions. Annales Academiae Scientiarum Fennicae Mathematica, 37, 319-338. doi:10.5186/aasfm.2012.3723 | es_ES |
dc.description.references | Bierstedt, K. D., Bonet, J., & Galbis, A. (1993). Weighted spaces of holomorphic functions on balanced domains. The Michigan Mathematical Journal, 40(2), 271-297. doi:10.1307/mmj/1029004753 | es_ES |
dc.description.references | Bierstedt, K. D., & Summers, W. H. (1993). Biduals of weighted banach spaces of analytic functions. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 54(1), 70-79. doi:10.1017/s1446788700036983 | es_ES |
dc.description.references | Bonet, J., & Wolf, E. (2003). A note on weighted Banach spaces of holomorphic functions. Archiv der Mathematik, 81(6), 650-654. doi:10.1007/s00013-003-0568-8 | es_ES |
dc.description.references | Aron, R. M., & Schottenloher, M. (1974). Compact holomorphic mappings on Banach spaces and the approximation property. Bulletin of the American Mathematical Society, 80(6), 1245-1250. doi:10.1090/s0002-9904-1974-13701-8 | es_ES |