- -

Weighted vector-valued holomorphic functions on Banach spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Weighted vector-valued holomorphic functions on Banach spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jorda Mora, Enrique es_ES
dc.date.accessioned 2015-06-03T11:57:58Z
dc.date.available 2015-06-03T11:57:58Z
dc.date.issued 2013
dc.identifier.issn 1085-3375
dc.identifier.uri http://hdl.handle.net/10251/51214
dc.description.abstract We study the weighted Banach spaces of vector-valued holomorphic functions defined on an open and connected subset of a Banach space. We use linearization results on these spaces to get conditions which ensure that a function f defined in a subset A of an open and connected subset U of a Banach space X, with values in another Banach space X, and admitting certain weak extensions in a Banach space of holomorphic functions can be holomorphically extended in the corresponding Banach space of vector-valued functions. es_ES
dc.description.sponsorship The author wants to thank J. Bonet for several references, discussions, and ideas provided, which were very helpful and in particular allowed him to prove Theorem 7, Proposition 8, and Examples 15 and 16. Remark 4 is due to him. The participation of M. J. Beltran in a lot of discussions during all the work has also been very important. Her ideas are also reflected in the paper. The author is also indebted to L. Frerick and J. Wengenroth for communicating to him Lemma 2. The remarks and corrections of the referee have been also really helpful to the final version. The author thanks him/her for that. This research was partially supported by MEC and FEDER Project MTM2010-15200, GV Project ACOMP/2012/090, and Programa de Apoyo a la Investigacin y Desarrollo de la UPV PAID-06-12. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Injective tensor product es_ES
dc.subject Composition operators es_ES
dc.subject Infinite dimensions es_ES
dc.subject Analytic function es_ES
dc.subject Harmonic funcions es_ES
dc.subject Linearization es_ES
dc.subject Extension es_ES
dc.subject Mappings es_ES
dc.subject Continuation es_ES
dc.subject Boundaries es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Weighted vector-valued holomorphic functions on Banach spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2013/501592
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-15200/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS MATEMATICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F090/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-12/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Jorda Mora, E. (2013). Weighted vector-valued holomorphic functions on Banach spaces. Abstract and Applied Analysis. 2013:1-9. https://doi.org/10.1155/2013/501592 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2013/501592 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2013 es_ES
dc.relation.senia 251764
dc.identifier.eissn 1687-0409
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Dunford, N. (1938). Uniformity in Linear Spaces. Transactions of the American Mathematical Society, 44(2), 305. doi:10.2307/1989974 es_ES
dc.description.references Bogdanowicz, W. M. (1969). Analytic continuation of holomorphic functions with values in a locally convex space. Proceedings of the American Mathematical Society, 22(3), 660-660. doi:10.1090/s0002-9939-1969-0250067-1 es_ES
dc.description.references Arendt, W., & Nikolski, N. (2000). Vector-valued holomorphic functions revisited. Mathematische Zeitschrift, 234(4), 777-805. doi:10.1007/s002090050008 es_ES
dc.description.references Bonet, J., Frerick, L., & Jordá, E. (2007). Extension of vector-valued holomorphic and harmonic functions. Studia Mathematica, 183(3), 225-248. doi:10.4064/sm183-3-2 es_ES
dc.description.references Frerick, L., Jordá, E., & Wengenroth, J. (2009). Extension of bounded vector-valued functions. Mathematische Nachrichten, 282(5), 690-696. doi:10.1002/mana.200610764 es_ES
dc.description.references GROSSE-ERDMANN, K.-G. (2004). A weak criterion for vector-valued holomorphy. Mathematical Proceedings of the Cambridge Philosophical Society, 136(2), 399-411. doi:10.1017/s0305004103007254 es_ES
dc.description.references Laitila, J., & Tylli, H.-O. (2006). Composition operators on vector-valued harmonic functions and Cauchy transforms. Indiana University Mathematics Journal, 55(2), 719-746. doi:10.1512/iumj.2006.55.2785 es_ES
dc.description.references Beltrán, M. J. (2011). Linearization of weighted (LB)-spaces of entire functions on Banach spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 106(2), 275-286. doi:10.1007/s13398-011-0049-z es_ES
dc.description.references Carando, D., & Zalduendo, I. (2004). Linearization of functions. Mathematische Annalen, 328(4), 683-700. doi:10.1007/s00208-003-0502-1 es_ES
dc.description.references Mujica, J. (1991). Linearization of Bounded Holomorphic Mappings on Banach Spaces. Transactions of the American Mathematical Society, 324(2), 867. doi:10.2307/2001745 es_ES
dc.description.references Fabian, M., Habala, P., Hájek, P., Montesinos, V., & Zizler, V. (2011). Banach Space Theory. CMS Books in Mathematics. doi:10.1007/978-1-4419-7515-7 es_ES
dc.description.references Dineen, S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. doi:10.1007/978-1-4471-0869-6 es_ES
dc.description.references Boyd, C., & Lassalle, S. (2009). GEOMETRY AND ANALYTIC BOUNDARIES OF MARCINKIEWICZ SEQUENCE SPACES. The Quarterly Journal of Mathematics, 61(2), 183-197. doi:10.1093/qmath/han037 es_ES
dc.description.references Globevnik, J. (1978). On interpolation by analytic maps in infinite dimensions. Mathematical Proceedings of the Cambridge Philosophical Society, 83(2), 243-252. doi:10.1017/s0305004100054505 es_ES
dc.description.references Globevnik, J. (1979). Boundaries for polydisc algebras in infinite dimensions. Mathematical Proceedings of the Cambridge Philosophical Society, 85(2), 291-303. doi:10.1017/s0305004100055705 es_ES
dc.description.references Seip, K. (1993). Beurling type density theorems in the unit disk. Inventiones Mathematicae, 113(1), 21-39. doi:10.1007/bf01244300 es_ES
dc.description.references Ng, K. (1971). On a Theorem of Dixmier. MATHEMATICA SCANDINAVICA, 29, 279. doi:10.7146/math.scand.a-11054 es_ES
dc.description.references Bochnak, J., & Siciak, J. (1971). Polynomials and multilinear mappings in topological vector-spaces. Studia Mathematica, 39(1), 59-76. doi:10.4064/sm-39-1-59-76 es_ES
dc.description.references Gramsch, B. (1977). Ein Schwach-Stark-Prinzip der Dualit�tstheorie lokalkonvexer R�ume als Fortsetzungsmethode. Mathematische Zeitschrift, 156(3), 217-230. doi:10.1007/bf01214410 es_ES
dc.description.references Bonet, J., Gómez-Collado, M. C., Jornet, D., & Wolf, E. (2012). Operator-weighted composition operators between weighted spaces of vector-valued analytic functions. Annales Academiae Scientiarum Fennicae Mathematica, 37, 319-338. doi:10.5186/aasfm.2012.3723 es_ES
dc.description.references Bierstedt, K. D., Bonet, J., & Galbis, A. (1993). Weighted spaces of holomorphic functions on balanced domains. The Michigan Mathematical Journal, 40(2), 271-297. doi:10.1307/mmj/1029004753 es_ES
dc.description.references Bierstedt, K. D., & Summers, W. H. (1993). Biduals of weighted banach spaces of analytic functions. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 54(1), 70-79. doi:10.1017/s1446788700036983 es_ES
dc.description.references Bonet, J., & Wolf, E. (2003). A note on weighted Banach spaces of holomorphic functions. Archiv der Mathematik, 81(6), 650-654. doi:10.1007/s00013-003-0568-8 es_ES
dc.description.references Aron, R. M., & Schottenloher, M. (1974). Compact holomorphic mappings on Banach spaces and the approximation property. Bulletin of the American Mathematical Society, 80(6), 1245-1250. doi:10.1090/s0002-9904-1974-13701-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem