Mostrar el registro sencillo del ítem
dc.contributor.author | Villanueva-Oller, J. | es_ES |
dc.contributor.author | Acedo Rodríguez, Luis | es_ES |
dc.contributor.author | Moraño Fernández, José Antonio | es_ES |
dc.contributor.author | Sánchez Sánchez, A. | es_ES |
dc.date.accessioned | 2015-06-08T11:27:52Z | |
dc.date.available | 2015-06-08T11:27:52Z | |
dc.date.issued | 2013-09-17 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.uri | http://hdl.handle.net/10251/51392 | |
dc.description.abstract | We discuss a computational system following the paradigm of distributed computing, which will allow us to simulate the epidemic propagation in random networks with large number of nodes up to one million. This paradigm consists of a server that delivers tasks to be carried out by client computers. When the task is finished, the client sends the obtained results to the server to be stored until all tasks are finished and then ready to be analysed. Finally, we show that this technique allows us to disclose the emergence of seasonal patterns in the respiratory syncytial virus transmission dynamics which do not appear neither in smaller systems nor in continuous systems. | es_ES |
dc.description.sponsorship | This paper has been supported by the Grant from the Universitat Politecnica de Valencia PAID-06-11 ref: 2087 and the Grant FIS PI-10/01433. The authors would like to thank the staff of the Facultad de Administracion de Empresas of the Universidad Politecnica de Valencia, in particular Mara Angeles Herrera, Teresa Solaz, and Jose Luis Real, and the staff of the CES Felipe II of Aranjuez for their help and for letting them use free computer rooms to carry out the Sisifo computations described in this paper. They would also like to acknowledge the BOINC community for its support and the many anonymous volunteers who joined thier project and helped them obtain the results so fast. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Abstract and Applied Analysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Respiratory syncytial virus | es_ES |
dc.subject | Large social network | es_ES |
dc.subject | Infectious-diseases | es_ES |
dc.subject | Modeling epidemics | es_ES |
dc.subject | Dynamics | es_ES |
dc.subject | Rsv | es_ES |
dc.subject | Transmission | es_ES |
dc.subject | Influenza | es_ES |
dc.subject | Smallpox | es_ES |
dc.subject | Children | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Epidemic Random Network Simulations in a Distributed Computing Environment | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2013/462801 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-11-2087/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PI10%2F01433/ES/Análisis de la pertinencia de cambio de pauta vacunal frente meningococo en la CV. Modelación epidemiológica mediante redes aleatoris/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Villanueva-Oller, J.; Acedo Rodríguez, L.; Moraño Fernández, JA.; Sánchez Sánchez, A. (2013). Epidemic Random Network Simulations in a Distributed Computing Environment. Abstract and Applied Analysis. 2013:1-10. https://doi.org/10.1155/2013/462801 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2013/462801 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2013 | es_ES |
dc.relation.senia | 249248 | |
dc.identifier.eissn | 1687-0409 | |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | PROULX, S., PROMISLOW, D., & PHILLIPS, P. (2005). Network thinking in ecology and evolution. Trends in Ecology & Evolution, 20(6), 345-353. doi:10.1016/j.tree.2005.04.004 | es_ES |
dc.description.references | Traud, A. L., Mucha, P. J., & Porter, M. A. (2012). Social structure of Facebook networks. Physica A: Statistical Mechanics and its Applications, 391(16), 4165-4180. doi:10.1016/j.physa.2011.12.021 | es_ES |
dc.description.references | Christakis, N. A., & Fowler, J. H. (2008). The Collective Dynamics of Smoking in a Large Social Network. New England Journal of Medicine, 358(21), 2249-2258. doi:10.1056/nejmsa0706154 | es_ES |
dc.description.references | Christakis, N. A., & Fowler, J. H. (2007). The Spread of Obesity in a Large Social Network over 32 Years. New England Journal of Medicine, 357(4), 370-379. doi:10.1056/nejmsa066082 | es_ES |
dc.description.references | Halloran, M. E. (2002). Containing Bioterrorist Smallpox. Science, 298(5597), 1428-1432. doi:10.1126/science.1074674 | es_ES |
dc.description.references | Ahmed, E., & Agiza, H. N. (1998). On modeling epidemics Including latency, incubation and variable susceptibility. Physica A: Statistical Mechanics and its Applications, 253(1-4), 347-352. doi:10.1016/s0378-4371(97)00665-1 | es_ES |
dc.description.references | Martins, M. L., Ceotto, G., Alves, S. G., Bufon, C. C. B., Silva, J. M., & Laranjeira, F. F. (2000). Cellular automata model for citrus variegated chlorosis. Physical Review E, 62(5), 7024-7030. doi:10.1103/physreve.62.7024 | es_ES |
dc.description.references | Hershberg, U., Louzoun, Y., Atlan, H., & Solomon, S. (2001). HIV time hierarchy: winning the war while, loosing all the battles. Physica A: Statistical Mechanics and its Applications, 289(1-2), 178-190. doi:10.1016/s0378-4371(00)00466-0 | es_ES |
dc.description.references | Witten, G., & Poulter, G. (2007). Simulations of infectious diseases on networks. Computers in Biology and Medicine, 37(2), 195-205. doi:10.1016/j.compbiomed.2005.12.002 | es_ES |
dc.description.references | Acedo, L., Moraño, J.-A., & Díez-Domingo, J. (2010). Cost analysis of a vaccination strategy for respiratory syncytial virus (RSV) in a network model. Mathematical and Computer Modelling, 52(7-8), 1016-1022. doi:10.1016/j.mcm.2010.02.041 | es_ES |
dc.description.references | Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review, 42(4), 599-653. doi:10.1137/s0036144500371907 | es_ES |
dc.description.references | Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509 | es_ES |
dc.description.references | Villanueva-Oller, J., Villanueva, R. J., & Díez, S. (2007). CASANDRA: A prototype implementation of a system of network progressive transmission of medical digital images. Computer Methods and Programs in Biomedicine, 85(2), 152-164. doi:10.1016/j.cmpb.2006.10.002 | es_ES |
dc.description.references | Korpela, E., Werthimer, D., Anderson, D., Cobb, J., & Leboisky, M. (2001). SETI@home-massively distributed computing for SETI. Computing in Science & Engineering, 3(1), 78-83. doi:10.1109/5992.895191 | es_ES |
dc.description.references | Hall, C. B., Powell, K. R., MacDonald, N. E., Gala, C. L., Menegus, M. E., Suffin, S. C., & Cohen, H. J. (1986). Respiratory Syncytial Viral Infection in Children with Compromised Immune Function. New England Journal of Medicine, 315(2), 77-81. doi:10.1056/nejm198607103150201 | es_ES |
dc.description.references | Falsey, A. R., & Walsh, E. E. (2000). Respiratory Syncytial Virus Infection in Adults. Clinical Microbiology Reviews, 13(3), 371-384. doi:10.1128/cmr.13.3.371-384.2000 | es_ES |
dc.description.references | Díez Domingo, J., Ridao López, M., Úbeda Sansano, I., & Ballester Sanz, A. (2006). Incidencia y costes de la hospitalización por bronquiolitis y de las infecciones por virus respiratorio sincitial en la Comunidad Valenciana. Años 2001 y 2002. Anales de Pediatría, 65(4), 325-330. doi:10.1157/13093515 | es_ES |
dc.description.references | ACEDO, L., DÍEZ-DOMINGO, J., MORAÑO, J.-A., & VILLANUEVA, R.-J. (2009). Mathematical modelling of respiratory syncytial virus (RSV): vaccination strategies and budget applications. Epidemiology and Infection, 138(6), 853-860. doi:10.1017/s0950268809991373 | es_ES |
dc.description.references | Weber, A., Weber, M., & Milligan, P. (2001). Modeling epidemics caused by respiratory syncytial virus (RSV). Mathematical Biosciences, 172(2), 95-113. doi:10.1016/s0025-5564(01)00066-9 | es_ES |
dc.description.references | White, L. J., Mandl, J. N., Gomes, M. G. M., Bodley-Tickell, A. T., Cane, P. A., Perez-Brena, P., … Medley, G. F. (2007). Understanding the transmission dynamics of respiratory syncytial virus using multiple time series and nested models. Mathematical Biosciences, 209(1), 222-239. doi:10.1016/j.mbs.2006.08.018 | es_ES |
dc.description.references | Acedo, L., Moraño, J.-A., Villanueva, R.-J., Villanueva-Oller, J., & Díez-Domingo, J. (2011). Using random networks to study the dynamics of respiratory syncytial virus (RSV) in the Spanish region of Valencia. Mathematical and Computer Modelling, 54(7-8), 1650-1654. doi:10.1016/j.mcm.2010.11.068 | es_ES |
dc.description.references | SCHNEEBERGER, A., MERCER, C. H., GREGSON, S. A. J., FERGUSON, N. M., NYAMUKAPA, C. A., ANDERSON, R. M., … GARNETT, G. P. (2004). Scale-Free Networks and Sexually Transmitted Diseases. Sexually Transmitted Diseases, 31(6), 380-387. doi:10.1097/00007435-200406000-00012 | es_ES |
dc.description.references | Lou, J., & Ruggeri, T. (2010). The dynamics of spreading and immune strategies of sexually transmitted diseases on scale-free network. Journal of Mathematical Analysis and Applications, 365(1), 210-219. doi:10.1016/j.jmaa.2009.10.044 | es_ES |
dc.description.references | Fleming, D. M. (2005). Mortality in children from influenza and respiratory syncytial virus. Journal of Epidemiology & Community Health, 59(7), 586-590. doi:10.1136/jech.2004.026450 | es_ES |
dc.description.references | Meerhoff, T. J., Paget, J. W., Kimpen, J. L., & Schellevis, F. (2009). Variation of Respiratory Syncytial Virus and the Relation With Meteorological Factors in Different Winter Seasons. The Pediatric Infectious Disease Journal, 28(10), 860-866. doi:10.1097/inf.0b013e3181a3e949 | es_ES |
dc.description.references | Welliver, R. C. (2007). Temperature, Humidity, and Ultraviolet B Radiation Predict Community Respiratory Syncytial Virus Activity. The Pediatric Infectious Disease Journal, 26(Supplement), S29-S35. doi:10.1097/inf.0b013e318157da59 | es_ES |
dc.description.references | Dushoff, J., Plotkin, J. B., Levin, S. A., & Earn, D. J. D. (2004). Dynamical resonance can account for seasonality of influenza epidemics. Proceedings of the National Academy of Sciences, 101(48), 16915-16916. doi:10.1073/pnas.0407293101 | es_ES |
dc.description.references | Arino, J., Davis, J. R., Hartley, D., Jordan, R., Miller, J. M., & van den Driessche, P. (2005). A multi-species epidemic model with spatial dynamics. Mathematical Medicine and Biology: A Journal of the IMA, 22(2), 129-142. doi:10.1093/imammb/dqi003 | es_ES |