- -

Epidemic Random Network Simulations in a Distributed Computing Environment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Epidemic Random Network Simulations in a Distributed Computing Environment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Villanueva-Oller, J. es_ES
dc.contributor.author Acedo Rodríguez, Luis es_ES
dc.contributor.author Moraño Fernández, José Antonio es_ES
dc.contributor.author Sánchez Sánchez, A. es_ES
dc.date.accessioned 2015-06-08T11:27:52Z
dc.date.available 2015-06-08T11:27:52Z
dc.date.issued 2013-09-17
dc.identifier.issn 1085-3375
dc.identifier.uri http://hdl.handle.net/10251/51392
dc.description.abstract We discuss a computational system following the paradigm of distributed computing, which will allow us to simulate the epidemic propagation in random networks with large number of nodes up to one million. This paradigm consists of a server that delivers tasks to be carried out by client computers. When the task is finished, the client sends the obtained results to the server to be stored until all tasks are finished and then ready to be analysed. Finally, we show that this technique allows us to disclose the emergence of seasonal patterns in the respiratory syncytial virus transmission dynamics which do not appear neither in smaller systems nor in continuous systems. es_ES
dc.description.sponsorship This paper has been supported by the Grant from the Universitat Politecnica de Valencia PAID-06-11 ref: 2087 and the Grant FIS PI-10/01433. The authors would like to thank the staff of the Facultad de Administracion de Empresas of the Universidad Politecnica de Valencia, in particular Mara Angeles Herrera, Teresa Solaz, and Jose Luis Real, and the staff of the CES Felipe II of Aranjuez for their help and for letting them use free computer rooms to carry out the Sisifo computations described in this paper. They would also like to acknowledge the BOINC community for its support and the many anonymous volunteers who joined thier project and helped them obtain the results so fast. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Respiratory syncytial virus es_ES
dc.subject Large social network es_ES
dc.subject Infectious-diseases es_ES
dc.subject Modeling epidemics es_ES
dc.subject Dynamics es_ES
dc.subject Rsv es_ES
dc.subject Transmission es_ES
dc.subject Influenza es_ES
dc.subject Smallpox es_ES
dc.subject Children es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Epidemic Random Network Simulations in a Distributed Computing Environment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2013/462801
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-11-2087/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI10%2F01433/ES/Análisis de la pertinencia de cambio de pauta vacunal frente meningococo en la CV. Modelación epidemiológica mediante redes aleatoris/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Villanueva-Oller, J.; Acedo Rodríguez, L.; Moraño Fernández, JA.; Sánchez Sánchez, A. (2013). Epidemic Random Network Simulations in a Distributed Computing Environment. Abstract and Applied Analysis. 2013:1-10. https://doi.org/10.1155/2013/462801 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2013/462801 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2013 es_ES
dc.relation.senia 249248
dc.identifier.eissn 1687-0409
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references PROULX, S., PROMISLOW, D., & PHILLIPS, P. (2005). Network thinking in ecology and evolution. Trends in Ecology & Evolution, 20(6), 345-353. doi:10.1016/j.tree.2005.04.004 es_ES
dc.description.references Traud, A. L., Mucha, P. J., & Porter, M. A. (2012). Social structure of Facebook networks. Physica A: Statistical Mechanics and its Applications, 391(16), 4165-4180. doi:10.1016/j.physa.2011.12.021 es_ES
dc.description.references Christakis, N. A., & Fowler, J. H. (2008). The Collective Dynamics of Smoking in a Large Social Network. New England Journal of Medicine, 358(21), 2249-2258. doi:10.1056/nejmsa0706154 es_ES
dc.description.references Christakis, N. A., & Fowler, J. H. (2007). The Spread of Obesity in a Large Social Network over 32 Years. New England Journal of Medicine, 357(4), 370-379. doi:10.1056/nejmsa066082 es_ES
dc.description.references Halloran, M. E. (2002). Containing Bioterrorist Smallpox. Science, 298(5597), 1428-1432. doi:10.1126/science.1074674 es_ES
dc.description.references Ahmed, E., & Agiza, H. N. (1998). On modeling epidemics Including latency, incubation and variable susceptibility. Physica A: Statistical Mechanics and its Applications, 253(1-4), 347-352. doi:10.1016/s0378-4371(97)00665-1 es_ES
dc.description.references Martins, M. L., Ceotto, G., Alves, S. G., Bufon, C. C. B., Silva, J. M., & Laranjeira, F. F. (2000). Cellular automata model for citrus variegated chlorosis. Physical Review E, 62(5), 7024-7030. doi:10.1103/physreve.62.7024 es_ES
dc.description.references Hershberg, U., Louzoun, Y., Atlan, H., & Solomon, S. (2001). HIV time hierarchy: winning the war while, loosing all the battles. Physica A: Statistical Mechanics and its Applications, 289(1-2), 178-190. doi:10.1016/s0378-4371(00)00466-0 es_ES
dc.description.references Witten, G., & Poulter, G. (2007). Simulations of infectious diseases on networks. Computers in Biology and Medicine, 37(2), 195-205. doi:10.1016/j.compbiomed.2005.12.002 es_ES
dc.description.references Acedo, L., Moraño, J.-A., & Díez-Domingo, J. (2010). Cost analysis of a vaccination strategy for respiratory syncytial virus (RSV) in a network model. Mathematical and Computer Modelling, 52(7-8), 1016-1022. doi:10.1016/j.mcm.2010.02.041 es_ES
dc.description.references Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review, 42(4), 599-653. doi:10.1137/s0036144500371907 es_ES
dc.description.references Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509 es_ES
dc.description.references Villanueva-Oller, J., Villanueva, R. J., & Díez, S. (2007). CASANDRA: A prototype implementation of a system of network progressive transmission of medical digital images. Computer Methods and Programs in Biomedicine, 85(2), 152-164. doi:10.1016/j.cmpb.2006.10.002 es_ES
dc.description.references Korpela, E., Werthimer, D., Anderson, D., Cobb, J., & Leboisky, M. (2001). SETI@home-massively distributed computing for SETI. Computing in Science & Engineering, 3(1), 78-83. doi:10.1109/5992.895191 es_ES
dc.description.references Hall, C. B., Powell, K. R., MacDonald, N. E., Gala, C. L., Menegus, M. E., Suffin, S. C., & Cohen, H. J. (1986). Respiratory Syncytial Viral Infection in Children with Compromised Immune Function. New England Journal of Medicine, 315(2), 77-81. doi:10.1056/nejm198607103150201 es_ES
dc.description.references Falsey, A. R., & Walsh, E. E. (2000). Respiratory Syncytial Virus Infection in Adults. Clinical Microbiology Reviews, 13(3), 371-384. doi:10.1128/cmr.13.3.371-384.2000 es_ES
dc.description.references Díez Domingo, J., Ridao López, M., Úbeda Sansano, I., & Ballester Sanz, A. (2006). Incidencia y costes de la hospitalización por bronquiolitis y de las infecciones por virus respiratorio sincitial en la Comunidad Valenciana. Años 2001 y 2002. Anales de Pediatría, 65(4), 325-330. doi:10.1157/13093515 es_ES
dc.description.references ACEDO, L., DÍEZ-DOMINGO, J., MORAÑO, J.-A., & VILLANUEVA, R.-J. (2009). Mathematical modelling of respiratory syncytial virus (RSV): vaccination strategies and budget applications. Epidemiology and Infection, 138(6), 853-860. doi:10.1017/s0950268809991373 es_ES
dc.description.references Weber, A., Weber, M., & Milligan, P. (2001). Modeling epidemics caused by respiratory syncytial virus (RSV). Mathematical Biosciences, 172(2), 95-113. doi:10.1016/s0025-5564(01)00066-9 es_ES
dc.description.references White, L. J., Mandl, J. N., Gomes, M. G. M., Bodley-Tickell, A. T., Cane, P. A., Perez-Brena, P., … Medley, G. F. (2007). Understanding the transmission dynamics of respiratory syncytial virus using multiple time series and nested models. Mathematical Biosciences, 209(1), 222-239. doi:10.1016/j.mbs.2006.08.018 es_ES
dc.description.references Acedo, L., Moraño, J.-A., Villanueva, R.-J., Villanueva-Oller, J., & Díez-Domingo, J. (2011). Using random networks to study the dynamics of respiratory syncytial virus (RSV) in the Spanish region of Valencia. Mathematical and Computer Modelling, 54(7-8), 1650-1654. doi:10.1016/j.mcm.2010.11.068 es_ES
dc.description.references SCHNEEBERGER, A., MERCER, C. H., GREGSON, S. A. J., FERGUSON, N. M., NYAMUKAPA, C. A., ANDERSON, R. M., … GARNETT, G. P. (2004). Scale-Free Networks and Sexually Transmitted Diseases. Sexually Transmitted Diseases, 31(6), 380-387. doi:10.1097/00007435-200406000-00012 es_ES
dc.description.references Lou, J., & Ruggeri, T. (2010). The dynamics of spreading and immune strategies of sexually transmitted diseases on scale-free network. Journal of Mathematical Analysis and Applications, 365(1), 210-219. doi:10.1016/j.jmaa.2009.10.044 es_ES
dc.description.references Fleming, D. M. (2005). Mortality in children from influenza and respiratory syncytial virus. Journal of Epidemiology & Community Health, 59(7), 586-590. doi:10.1136/jech.2004.026450 es_ES
dc.description.references Meerhoff, T. J., Paget, J. W., Kimpen, J. L., & Schellevis, F. (2009). Variation of Respiratory Syncytial Virus and the Relation With Meteorological Factors in Different Winter Seasons. The Pediatric Infectious Disease Journal, 28(10), 860-866. doi:10.1097/inf.0b013e3181a3e949 es_ES
dc.description.references Welliver, R. C. (2007). Temperature, Humidity, and Ultraviolet B Radiation Predict Community Respiratory Syncytial Virus Activity. The Pediatric Infectious Disease Journal, 26(Supplement), S29-S35. doi:10.1097/inf.0b013e318157da59 es_ES
dc.description.references Dushoff, J., Plotkin, J. B., Levin, S. A., & Earn, D. J. D. (2004). Dynamical resonance can account for seasonality of influenza epidemics. Proceedings of the National Academy of Sciences, 101(48), 16915-16916. doi:10.1073/pnas.0407293101 es_ES
dc.description.references Arino, J., Davis, J. R., Hartley, D., Jordan, R., Miller, J. M., & van den Driessche, P. (2005). A multi-species epidemic model with spatial dynamics. Mathematical Medicine and Biology: A Journal of the IMA, 22(2), 129-142. doi:10.1093/imammb/dqi003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem