Mostrar el registro sencillo del ítem
dc.contributor.author | Ye-Lin, Yiyao | es_ES |
dc.contributor.author | Garcia Casado, Francisco Javier | es_ES |
dc.contributor.author | Prats Boluda, Gema | es_ES |
dc.contributor.author | Alberola Rubio, José | es_ES |
dc.contributor.author | Perales Marin, Alfredo Jose | es_ES |
dc.date.accessioned | 2015-06-15T08:39:33Z | |
dc.date.available | 2015-06-15T08:39:33Z | |
dc.date.issued | 2014-01-09 | |
dc.identifier.issn | 1748-670X | |
dc.identifier.uri | http://hdl.handle.net/10251/51682 | |
dc.description.abstract | Electrohysterography (EHG) is a non-invasive technique for monitoring uterine electrical activity. However, the presence of artifacts in the EHG signal may give rise to erroneous interpretations and make it difficult to extract useful information from these recordings. The aim of this work was to develop an automatic system of segmenting EHG recordings that distinguishes between uterine contractions and artifacts. Firstly, the segmentation is performed using an algorithm that generates the toco-like signal derived from the EHG and detects windows with significant changes in amplitude. After that, these segments are classified in two groups: artifacted and non-artifacted signals. To develop a classifier, a total of eleven spectral, temporal and non-linear features were calculated from EHG signal windows from 12 women in the first stage of labor that had previously been classified by experts. The combination of characteristics that led to the highest degree of accuracy in detecting artifacts was then determined. The results showed that it is possible to obtain automatic detection of motion artifacts in segmented EHG recordings with a precision of 92.2% using only seven features. The proposed algorithm and classifier together compose a useful tool for analyzing EHG signals and would help to promote clinical applications of this technique. | es_ES |
dc.description.sponsorship | The authors are grateful to the R + D + I Linguistic Assistance Office at the UPV for their help in proofreading this paper. The work was supported by the Ministerio de Ciencia e Innovacion de Espana (TEC2010-16945). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Computational and Mathematical Methods in Medicine | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Electrohysterogram | es_ES |
dc.subject | Uterine electrical activity | es_ES |
dc.subject | Uterine electromyogram | es_ES |
dc.subject | Motion artifacts | es_ES |
dc.subject | Feature analysis | es_ES |
dc.subject | Artifact detection | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2014/470786 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-16945/ES/APLICACION DE TECNICAS LAPLACIANAS PARA LA MONITORIZACION DE LA ACTIVIDAD ELECTRICA DEL MUSCULO LISO HUMANO: ENFASIS EN ELECTROHISTEROGRAMA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Servicio de Alumnado - Servei d'Alumnat | es_ES |
dc.description.bibliographicCitation | Ye-Lin, Y.; Garcia Casado, FJ.; Prats Boluda, G.; Alberola Rubio, J.; Perales Marin, AJ. (2014). Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions. Computational and Mathematical Methods in Medicine. 2014:1-11. https://doi.org/10.1155/2014/470786 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2014/470786 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2014 | es_ES |
dc.relation.senia | 254224 | |
dc.identifier.eissn | 1748-6718 | |
dc.identifier.pmid | 24523828 | en_EN |
dc.identifier.pmcid | PMC3912778 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Wilmink, F. A., Wilms, F. F., Heydanus, R., Mol, B. W. J., & Papatsonis, D. N. M. (2008). Fetal complications after placement of an intrauterine pressure catheter: A report of two cases and review of the literature. The Journal of Maternal-Fetal & Neonatal Medicine, 21(12), 880-883. doi:10.1080/14767050802220508 | es_ES |
dc.description.references | Vinken, M. P. G. C., Rabotti, C., Mischi, M., & Oei, S. G. (2009). Accuracy of Frequency-Related Parameters of the Electrohysterogram for Predicting Preterm Delivery. Obstetrical & Gynecological Survey, 64(8), 529-541. doi:10.1097/ogx.0b013e3181a8c6b1 | es_ES |
dc.description.references | Schlembach, D., Maner, W. L., Garfield, R. E., & Maul, H. (2009). Monitoring the progress of pregnancy and labor using electromyography. European Journal of Obstetrics & Gynecology and Reproductive Biology, 144, S33-S39. doi:10.1016/j.ejogrb.2009.02.016 | es_ES |
dc.description.references | Miles, A. M., Monga, M., & Richeson, K. S. (2001). Correlation of External and Internal Monitoring of Uterine Activity in a Cohort of Term Patients. American Journal of Perinatology, 18(03), 137-140. doi:10.1055/s-2001-14522 | es_ES |
dc.description.references | Devedeux, D., Marque, C., Mansour, S., Germain, G., & Duchêne, J. (1993). Uterine electromyography: A critical review. American Journal of Obstetrics and Gynecology, 169(6), 1636-1653. doi:10.1016/0002-9378(93)90456-s | es_ES |
dc.description.references | Garfield, R. E., & Maner, W. L. (2007). Physiology and electrical activity of uterine contractions. Seminars in Cell & Developmental Biology, 18(3), 289-295. doi:10.1016/j.semcdb.2007.05.004 | es_ES |
dc.description.references | Marque, C. K., Terrien, J., Rihana, S., & Germain, G. (2007). Preterm labour detection by use of a biophysical marker: the uterine electrical activity. BMC Pregnancy and Childbirth, 7(S1). doi:10.1186/1471-2393-7-s1-s5 | es_ES |
dc.description.references | Lucovnik, M., Maner, W. L., Chambliss, L. R., Blumrick, R., Balducci, J., Novak-Antolic, Z., & Garfield, R. E. (2011). Noninvasive uterine electromyography for prediction of preterm delivery. American Journal of Obstetrics and Gynecology, 204(3), 228.e1-228.e10. doi:10.1016/j.ajog.2010.09.024 | es_ES |
dc.description.references | Euliano, T. Y., Marossero, D., Nguyen, M. T., Euliano, N. R., Principe, J., & Edwards, R. K. (2009). Spatiotemporal electrohysterography patterns in normal and arrested labor. American Journal of Obstetrics and Gynecology, 200(1), 54.e1-54.e7. doi:10.1016/j.ajog.2008.09.008 | es_ES |
dc.description.references | Rabotti, C., Mischi, M., van Laar, J. O. E. H., Oei, G. S., & Bergmans, J. W. M. (2009). Inter-electrode delay estimators for electrohysterographic propagation analysis. Physiological Measurement, 30(8), 745-761. doi:10.1088/0967-3334/30/8/002 | es_ES |
dc.description.references | Jezewski, J., Horoba, K., Matonia, A., & Wrobel, J. (2005). Quantitative analysis of contraction patterns in electrical activity signal of pregnant uterus as an alternative to mechanical approach. Physiological Measurement, 26(5), 753-767. doi:10.1088/0967-3334/26/5/014 | es_ES |
dc.description.references | Euliano, T., Skowronski, M., Marossero, D., Shuster, J., & Edwards, R. (2006). Prediction of intrauterine pressure waveform from transabdominal electrohysterography. The Journal of Maternal-Fetal & Neonatal Medicine, 19(12), 803-808. doi:10.1080/14767050601023657 | es_ES |
dc.description.references | Euliano, T. Y., Nguyen, M. T., Marossero, D., & Edwards, R. K. (2007). Monitoring Contractions in Obese Parturients. Obstetrics & Gynecology, 109(5), 1136-1140. doi:10.1097/01.aog.0000258799.24496.93 | es_ES |
dc.description.references | Rabotti, C., Mischi, M., van Laar, J. O. E. H., Oei, G. S., & Bergmans, J. W. M. (2008). Estimation of internal uterine pressure by joint amplitude and frequency analysis of electrohysterographic signals. Physiological Measurement, 29(7), 829-841. doi:10.1088/0967-3334/29/7/011 | es_ES |
dc.description.references | Euliano, T. Y., Nguyen, M. T., Darmanjian, S., McGorray, S. P., Euliano, N., Onkala, A., & Gregg, A. R. (2013). Monitoring uterine activity during labor: a comparison of 3 methods. American Journal of Obstetrics and Gynecology, 208(1), 66.e1-66.e6. doi:10.1016/j.ajog.2012.10.873 | es_ES |
dc.description.references | Hassan, M., Boudaoud, S., Terrien, J., Karlsson, B., & Marque, C. (2011). Combination of Canonical Correlation Analysis and Empirical Mode Decomposition Applied to Denoising the Labor Electrohysterogram. IEEE Transactions on Biomedical Engineering, 58(9), 2441-2447. doi:10.1109/tbme.2011.2151861 | es_ES |
dc.description.references | Liang, J., Cheung, J. Y., & Chen, J. D. Z. (1997). Detection and deletion of motion artifacts in electrogastrogram using feature analysis and neural networks. Annals of Biomedical Engineering, 25(5), 850-857. doi:10.1007/bf02684169 | es_ES |
dc.description.references | Verhagen, M. A. M. T., Van Schelven, L. J., Samsom, M., & Smout, A. J. P. M. (1999). Pitfalls in the analysis of electrogastrographic recordings. Gastroenterology, 117(2), 453-460. doi:10.1053/gast.1999.0029900453 | es_ES |
dc.description.references | Conforto, S., D’Alessio, T., & Pignatelli, S. (1999). Optimal rejection of movement artefacts from myoelectric signals by means of a wavelet filtering procedure. Journal of Electromyography and Kinesiology, 9(1), 47-57. doi:10.1016/s1050-6411(98)00023-6 | es_ES |
dc.description.references | Liang, H., Lin, Z., & McCallum, R. W. (2000). Artifact reduction in electrogastrogram based on empirical mode decomposition method. Medical & Biological Engineering & Computing, 38(1), 35-41. doi:10.1007/bf02344686 | es_ES |
dc.description.references | Maner, W. L., & Garfield, R. E. (2007). Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data. Annals of Biomedical Engineering, 35(3), 465-473. doi:10.1007/s10439-006-9248-8 | es_ES |
dc.description.references | Moslem, B. (2010). Journal of Medical and Biological Engineering, 30(6), 361. doi:10.5405/jmbe.768 | es_ES |
dc.description.references | Hassan, M. M., Terrien, J., Muszynski, C., Alexandersson, A., Marque, C., & Karlsson, B. (2013). Better Pregnancy Monitoring Using Nonlinear Correlation Analysis of External Uterine Electromyography. IEEE Transactions on Biomedical Engineering, 60(4), 1160-1166. doi:10.1109/tbme.2012.2229279 | es_ES |
dc.description.references | Leman, H., Marque, C., & Gondry, J. (1999). Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Transactions on Biomedical Engineering, 46(10), 1222-1229. doi:10.1109/10.790499 | es_ES |
dc.description.references | Maul, H., Maner, W., Olson, G., Saade, G., & Garfield, R. (2004). Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. The Journal of Maternal-Fetal & Neonatal Medicine, 15(5), 297-301. doi:10.1080/14767050410001695301 | es_ES |
dc.description.references | Terrien, J., Steingrimsdottir, T., Marque, C., & Karlsson, B. (2010). Synchronization between EMG at Different Uterine Locations Investigated Using Time-Frequency Ridge Reconstruction: Comparison of Pregnancy and Labor Contractions. EURASIP Journal on Advances in Signal Processing, 2010(1). doi:10.1155/2010/242493 | es_ES |
dc.description.references | LUCOVNIK, M., KUON, R. J., CHAMBLISS, L. R., MANER, W. L., SHI, S.-Q., SHI, L., … GARFIELD, R. E. (2010). Use of uterine electromyography to diagnose term and preterm labor. Acta Obstetricia et Gynecologica Scandinavica, 90(2), 150-157. doi:10.1111/j.1600-0412.2010.01031.x | es_ES |
dc.description.references | Verdenik, I., Pajntar, M., & Leskošek, B. (2001). Uterine electrical activity as predictor of preterm birth in women with preterm contractions. European Journal of Obstetrics & Gynecology and Reproductive Biology, 95(2), 149-153. doi:10.1016/s0301-2115(00)00418-8 | es_ES |
dc.description.references | Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911-922. doi:10.1007/s11517-008-0350-y | es_ES |
dc.description.references | Hassan, M., Terrien, J., Marque, C., & Karlsson, B. (2011). Comparison between approximate entropy, correntropy and time reversibility: Application to uterine electromyogram signals. Medical Engineering & Physics, 33(8), 980-986. doi:10.1016/j.medengphy.2011.03.010 | es_ES |
dc.description.references | Irimia, A., & Bradshaw, L. A. (2005). Artifact reduction in magnetogastrography using fast independent component analysis. Physiological Measurement, 26(6), 1059-1073. doi:10.1088/0967-3334/26/6/015 | es_ES |
dc.description.references | Milanesi, M., Martini, N., Vanello, N., Positano, V., Santarelli, M. F., & Landini, L. (2007). Independent component analysis applied to the removal of motion artifacts from electrocardiographic signals. Medical & Biological Engineering & Computing, 46(3), 251-261. doi:10.1007/s11517-007-0293-8 | es_ES |
dc.description.references | Daly, I., Billinger, M., Scherer, R., & Muller-Putz, G. (2013). On the Automated Removal of Artifacts Related to Head Movement From the EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(3), 427-434. doi:10.1109/tnsre.2013.2254724 | es_ES |
dc.description.references | Ye-Lin, Y., Garcia-Casado, J., Prats-Boluda, G., & Martinez-de-Juan, J. L. (2010). Combined Method for Reduction of High Frequency Interferences in Surface Electroenterogram (EEnG). Annals of Biomedical Engineering, 38(7), 2358-2370. doi:10.1007/s10439-010-9991-8 | es_ES |
dc.description.references | Schreiber, T., & Schmitz, A. (2000). Surrogate time series. Physica D: Nonlinear Phenomena, 142(3-4), 346-382. doi:10.1016/s0167-2789(00)00043-9 | es_ES |
dc.description.references | Van Gestel, T., Suykens, J. A. K., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., … Vandewalle, J. (2004). Benchmarking Least Squares Support Vector Machine Classifiers. Machine Learning, 54(1), 5-32. doi:10.1023/b:mach.0000008082.80494.e0 | es_ES |
dc.description.references | Leman, H., & Marque, C. (2000). Rejection of the maternal electrocardiogram in the electrohysterogram signal. IEEE Transactions on Biomedical Engineering, 47(8), 1010-1017. doi:10.1109/10.855927 | es_ES |
dc.description.references | Marque, C., Bisch, C., Dantas, R., Elayoubi, S., Brosse, V., & Pérot, C. (2005). Adaptive filtering for ECG rejection from surface EMG recordings. Journal of Electromyography and Kinesiology, 15(3), 310-315. doi:10.1016/j.jelekin.2004.10.001 | es_ES |