- -

Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ye-Lin, Yiyao es_ES
dc.contributor.author Garcia Casado, Francisco Javier es_ES
dc.contributor.author Prats Boluda, Gema es_ES
dc.contributor.author Alberola Rubio, José es_ES
dc.contributor.author Perales Marin, Alfredo Jose es_ES
dc.date.accessioned 2015-06-15T08:39:33Z
dc.date.available 2015-06-15T08:39:33Z
dc.date.issued 2014-01-09
dc.identifier.issn 1748-670X
dc.identifier.uri http://hdl.handle.net/10251/51682
dc.description.abstract Electrohysterography (EHG) is a non-invasive technique for monitoring uterine electrical activity. However, the presence of artifacts in the EHG signal may give rise to erroneous interpretations and make it difficult to extract useful information from these recordings. The aim of this work was to develop an automatic system of segmenting EHG recordings that distinguishes between uterine contractions and artifacts. Firstly, the segmentation is performed using an algorithm that generates the toco-like signal derived from the EHG and detects windows with significant changes in amplitude. After that, these segments are classified in two groups: artifacted and non-artifacted signals. To develop a classifier, a total of eleven spectral, temporal and non-linear features were calculated from EHG signal windows from 12 women in the first stage of labor that had previously been classified by experts. The combination of characteristics that led to the highest degree of accuracy in detecting artifacts was then determined. The results showed that it is possible to obtain automatic detection of motion artifacts in segmented EHG recordings with a precision of 92.2% using only seven features. The proposed algorithm and classifier together compose a useful tool for analyzing EHG signals and would help to promote clinical applications of this technique. es_ES
dc.description.sponsorship The authors are grateful to the R + D + I Linguistic Assistance Office at the UPV for their help in proofreading this paper. The work was supported by the Ministerio de Ciencia e Innovacion de Espana (TEC2010-16945). en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Computational and Mathematical Methods in Medicine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Electrohysterogram es_ES
dc.subject Uterine electrical activity es_ES
dc.subject Uterine electromyogram es_ES
dc.subject Motion artifacts es_ES
dc.subject Feature analysis es_ES
dc.subject Artifact detection es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2014/470786
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-16945/ES/APLICACION DE TECNICAS LAPLACIANAS PARA LA MONITORIZACION DE LA ACTIVIDAD ELECTRICA DEL MUSCULO LISO HUMANO: ENFASIS EN ELECTROHISTEROGRAMA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Servicio de Alumnado - Servei d'Alumnat es_ES
dc.description.bibliographicCitation Ye-Lin, Y.; Garcia Casado, FJ.; Prats Boluda, G.; Alberola Rubio, J.; Perales Marin, AJ. (2014). Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions. Computational and Mathematical Methods in Medicine. 2014:1-11. https://doi.org/10.1155/2014/470786 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2014/470786 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2014 es_ES
dc.relation.senia 254224
dc.identifier.eissn 1748-6718
dc.identifier.pmid 24523828 en_EN
dc.identifier.pmcid PMC3912778 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Wilmink, F. A., Wilms, F. F., Heydanus, R., Mol, B. W. J., & Papatsonis, D. N. M. (2008). Fetal complications after placement of an intrauterine pressure catheter: A report of two cases and review of the literature. The Journal of Maternal-Fetal & Neonatal Medicine, 21(12), 880-883. doi:10.1080/14767050802220508 es_ES
dc.description.references Vinken, M. P. G. C., Rabotti, C., Mischi, M., & Oei, S. G. (2009). Accuracy of Frequency-Related Parameters of the Electrohysterogram for Predicting Preterm Delivery. Obstetrical & Gynecological Survey, 64(8), 529-541. doi:10.1097/ogx.0b013e3181a8c6b1 es_ES
dc.description.references Schlembach, D., Maner, W. L., Garfield, R. E., & Maul, H. (2009). Monitoring the progress of pregnancy and labor using electromyography. European Journal of Obstetrics & Gynecology and Reproductive Biology, 144, S33-S39. doi:10.1016/j.ejogrb.2009.02.016 es_ES
dc.description.references Miles, A. M., Monga, M., & Richeson, K. S. (2001). Correlation of External and Internal Monitoring of Uterine Activity in a Cohort of Term Patients. American Journal of Perinatology, 18(03), 137-140. doi:10.1055/s-2001-14522 es_ES
dc.description.references Devedeux, D., Marque, C., Mansour, S., Germain, G., & Duchêne, J. (1993). Uterine electromyography: A critical review. American Journal of Obstetrics and Gynecology, 169(6), 1636-1653. doi:10.1016/0002-9378(93)90456-s es_ES
dc.description.references Garfield, R. E., & Maner, W. L. (2007). Physiology and electrical activity of uterine contractions. Seminars in Cell & Developmental Biology, 18(3), 289-295. doi:10.1016/j.semcdb.2007.05.004 es_ES
dc.description.references Marque, C. K., Terrien, J., Rihana, S., & Germain, G. (2007). Preterm labour detection by use of a biophysical marker: the uterine electrical activity. BMC Pregnancy and Childbirth, 7(S1). doi:10.1186/1471-2393-7-s1-s5 es_ES
dc.description.references Lucovnik, M., Maner, W. L., Chambliss, L. R., Blumrick, R., Balducci, J., Novak-Antolic, Z., & Garfield, R. E. (2011). Noninvasive uterine electromyography for prediction of preterm delivery. American Journal of Obstetrics and Gynecology, 204(3), 228.e1-228.e10. doi:10.1016/j.ajog.2010.09.024 es_ES
dc.description.references Euliano, T. Y., Marossero, D., Nguyen, M. T., Euliano, N. R., Principe, J., & Edwards, R. K. (2009). Spatiotemporal electrohysterography patterns in normal and arrested labor. American Journal of Obstetrics and Gynecology, 200(1), 54.e1-54.e7. doi:10.1016/j.ajog.2008.09.008 es_ES
dc.description.references Rabotti, C., Mischi, M., van Laar, J. O. E. H., Oei, G. S., & Bergmans, J. W. M. (2009). Inter-electrode delay estimators for electrohysterographic propagation analysis. Physiological Measurement, 30(8), 745-761. doi:10.1088/0967-3334/30/8/002 es_ES
dc.description.references Jezewski, J., Horoba, K., Matonia, A., & Wrobel, J. (2005). Quantitative analysis of contraction patterns in electrical activity signal of pregnant uterus as an alternative to mechanical approach. Physiological Measurement, 26(5), 753-767. doi:10.1088/0967-3334/26/5/014 es_ES
dc.description.references Euliano, T., Skowronski, M., Marossero, D., Shuster, J., & Edwards, R. (2006). Prediction of intrauterine pressure waveform from transabdominal electrohysterography. The Journal of Maternal-Fetal & Neonatal Medicine, 19(12), 803-808. doi:10.1080/14767050601023657 es_ES
dc.description.references Euliano, T. Y., Nguyen, M. T., Marossero, D., & Edwards, R. K. (2007). Monitoring Contractions in Obese Parturients. Obstetrics & Gynecology, 109(5), 1136-1140. doi:10.1097/01.aog.0000258799.24496.93 es_ES
dc.description.references Rabotti, C., Mischi, M., van Laar, J. O. E. H., Oei, G. S., & Bergmans, J. W. M. (2008). Estimation of internal uterine pressure by joint amplitude and frequency analysis of electrohysterographic signals. Physiological Measurement, 29(7), 829-841. doi:10.1088/0967-3334/29/7/011 es_ES
dc.description.references Euliano, T. Y., Nguyen, M. T., Darmanjian, S., McGorray, S. P., Euliano, N., Onkala, A., & Gregg, A. R. (2013). Monitoring uterine activity during labor: a comparison of 3 methods. American Journal of Obstetrics and Gynecology, 208(1), 66.e1-66.e6. doi:10.1016/j.ajog.2012.10.873 es_ES
dc.description.references Hassan, M., Boudaoud, S., Terrien, J., Karlsson, B., & Marque, C. (2011). Combination of Canonical Correlation Analysis and Empirical Mode Decomposition Applied to Denoising the Labor Electrohysterogram. IEEE Transactions on Biomedical Engineering, 58(9), 2441-2447. doi:10.1109/tbme.2011.2151861 es_ES
dc.description.references Liang, J., Cheung, J. Y., & Chen, J. D. Z. (1997). Detection and deletion of motion artifacts in electrogastrogram using feature analysis and neural networks. Annals of Biomedical Engineering, 25(5), 850-857. doi:10.1007/bf02684169 es_ES
dc.description.references Verhagen, M. A. M. T., Van Schelven, L. J., Samsom, M., & Smout, A. J. P. M. (1999). Pitfalls in the analysis of electrogastrographic recordings. Gastroenterology, 117(2), 453-460. doi:10.1053/gast.1999.0029900453 es_ES
dc.description.references Conforto, S., D’Alessio, T., & Pignatelli, S. (1999). Optimal rejection of movement artefacts from myoelectric signals by means of a wavelet filtering procedure. Journal of Electromyography and Kinesiology, 9(1), 47-57. doi:10.1016/s1050-6411(98)00023-6 es_ES
dc.description.references Liang, H., Lin, Z., & McCallum, R. W. (2000). Artifact reduction in electrogastrogram based on empirical mode decomposition method. Medical & Biological Engineering & Computing, 38(1), 35-41. doi:10.1007/bf02344686 es_ES
dc.description.references Maner, W. L., & Garfield, R. E. (2007). Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data. Annals of Biomedical Engineering, 35(3), 465-473. doi:10.1007/s10439-006-9248-8 es_ES
dc.description.references Moslem, B. (2010). Journal of Medical and Biological Engineering, 30(6), 361. doi:10.5405/jmbe.768 es_ES
dc.description.references Hassan, M. M., Terrien, J., Muszynski, C., Alexandersson, A., Marque, C., & Karlsson, B. (2013). Better Pregnancy Monitoring Using Nonlinear Correlation Analysis of External Uterine Electromyography. IEEE Transactions on Biomedical Engineering, 60(4), 1160-1166. doi:10.1109/tbme.2012.2229279 es_ES
dc.description.references Leman, H., Marque, C., & Gondry, J. (1999). Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Transactions on Biomedical Engineering, 46(10), 1222-1229. doi:10.1109/10.790499 es_ES
dc.description.references Maul, H., Maner, W., Olson, G., Saade, G., & Garfield, R. (2004). Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. The Journal of Maternal-Fetal & Neonatal Medicine, 15(5), 297-301. doi:10.1080/14767050410001695301 es_ES
dc.description.references Terrien, J., Steingrimsdottir, T., Marque, C., & Karlsson, B. (2010). Synchronization between EMG at Different Uterine Locations Investigated Using Time-Frequency Ridge Reconstruction: Comparison of Pregnancy and Labor Contractions. EURASIP Journal on Advances in Signal Processing, 2010(1). doi:10.1155/2010/242493 es_ES
dc.description.references LUCOVNIK, M., KUON, R. J., CHAMBLISS, L. R., MANER, W. L., SHI, S.-Q., SHI, L., … GARFIELD, R. E. (2010). Use of uterine electromyography to diagnose term and preterm labor. Acta Obstetricia et Gynecologica Scandinavica, 90(2), 150-157. doi:10.1111/j.1600-0412.2010.01031.x es_ES
dc.description.references Verdenik, I., Pajntar, M., & Leskošek, B. (2001). Uterine electrical activity as predictor of preterm birth in women with preterm contractions. European Journal of Obstetrics & Gynecology and Reproductive Biology, 95(2), 149-153. doi:10.1016/s0301-2115(00)00418-8 es_ES
dc.description.references Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911-922. doi:10.1007/s11517-008-0350-y es_ES
dc.description.references Hassan, M., Terrien, J., Marque, C., & Karlsson, B. (2011). Comparison between approximate entropy, correntropy and time reversibility: Application to uterine electromyogram signals. Medical Engineering & Physics, 33(8), 980-986. doi:10.1016/j.medengphy.2011.03.010 es_ES
dc.description.references Irimia, A., & Bradshaw, L. A. (2005). Artifact reduction in magnetogastrography using fast independent component analysis. Physiological Measurement, 26(6), 1059-1073. doi:10.1088/0967-3334/26/6/015 es_ES
dc.description.references Milanesi, M., Martini, N., Vanello, N., Positano, V., Santarelli, M. F., & Landini, L. (2007). Independent component analysis applied to the removal of motion artifacts from electrocardiographic signals. Medical & Biological Engineering & Computing, 46(3), 251-261. doi:10.1007/s11517-007-0293-8 es_ES
dc.description.references Daly, I., Billinger, M., Scherer, R., & Muller-Putz, G. (2013). On the Automated Removal of Artifacts Related to Head Movement From the EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(3), 427-434. doi:10.1109/tnsre.2013.2254724 es_ES
dc.description.references Ye-Lin, Y., Garcia-Casado, J., Prats-Boluda, G., & Martinez-de-Juan, J. L. (2010). Combined Method for Reduction of High Frequency Interferences in Surface Electroenterogram (EEnG). Annals of Biomedical Engineering, 38(7), 2358-2370. doi:10.1007/s10439-010-9991-8 es_ES
dc.description.references Schreiber, T., & Schmitz, A. (2000). Surrogate time series. Physica D: Nonlinear Phenomena, 142(3-4), 346-382. doi:10.1016/s0167-2789(00)00043-9 es_ES
dc.description.references Van Gestel, T., Suykens, J. A. K., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., … Vandewalle, J. (2004). Benchmarking Least Squares Support Vector Machine Classifiers. Machine Learning, 54(1), 5-32. doi:10.1023/b:mach.0000008082.80494.e0 es_ES
dc.description.references Leman, H., & Marque, C. (2000). Rejection of the maternal electrocardiogram in the electrohysterogram signal. IEEE Transactions on Biomedical Engineering, 47(8), 1010-1017. doi:10.1109/10.855927 es_ES
dc.description.references Marque, C., Bisch, C., Dantas, R., Elayoubi, S., Brosse, V., & Pérot, C. (2005). Adaptive filtering for ECG rejection from surface EMG recordings. Journal of Electromyography and Kinesiology, 15(3), 310-315. doi:10.1016/j.jelekin.2004.10.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem