- -

Automatic corn (Zea mays) kernel inspection system using novelty detection based on principal component analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic corn (Zea mays) kernel inspection system using novelty detection based on principal component analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Valiente González, José Miguel es_ES
dc.contributor.author Andreu García, Gabriela es_ES
dc.contributor.author Potter, Paulus es_ES
dc.contributor.author Rodas Jordá, Ángel es_ES
dc.date.accessioned 2015-06-15T08:47:27Z
dc.date.available 2015-06-15T08:47:27Z
dc.date.issued 2014-01
dc.identifier.issn 1537-5110
dc.identifier.uri http://hdl.handle.net/10251/51683
dc.description.abstract [EN] Corn (Zea mays) kernel processing companies evaluate the quality of kernels to determine the price of a batch. Human inspectors in labs inspect a reduced set of kernels to estimate the proportion of damaged kernels in any given lot. The visual differences between good and damaged kernels may be minor and, therefore, difficult to discern. Our goal is to design a computer vision system that enables the automatic evaluation of the quality of corn lots. To decide if an individual kernel can be accepted or rejected, it is necessary to design a method to detect defects, as well as quantify the defective proportions. A setup to work inline and an approach to identify damaged kernels that combines algorithm-based computer vision techniques of novelty detection and principal component analysis (PCA) is presented. Experiments were carried out in three colour spaces using 450 dent corn kernels previously classified by experts. Results show that the method is promising (92% success) but extensions are recommended to further improve results. ª 2013 IAgrE. Published by Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship We acknowledge the support of the Spanish company DACSA Maiceras Españolas S.A. in supplying the dent corn samples
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Biosystems Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Image acquisition system es_ES
dc.subject Computer vision es_ES
dc.subject PCA es_ES
dc.subject Novelty detection es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Automatic corn (Zea mays) kernel inspection system using novelty detection based on principal component analysis es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso
dc.identifier.doi 10.1016/j.biosystemseng.2013.09.003
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Valiente González, JM.; Andreu García, G.; Potter, P.; Rodas Jordá, Á. (2014). Automatic corn (Zea mays) kernel inspection system using novelty detection based on principal component analysis. Biosystems Engineering. 117(1):94-103. doi:10.1016/j.biosystemseng.2013.09.003 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 4th International Workshop on Computer Image Analysis in Agriculture, held at CIGR-AgEng
dc.relation.conferencedate July 08-12, 2012
dc.relation.conferenceplace Valencia, Spain
dc.relation.publisherversion http://dx.doi.org/10.1016/j.biosystemseng.2013.09.003 es_ES
dc.description.upvformatpinicio 94 es_ES
dc.description.upvformatpfin 103 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 117 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 288315


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem