- -

A new approach based on Machine Learning for predicting corneal curvature (K1) and astigmatism in patients with keratoconus after intracorneal ring implantation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new approach based on Machine Learning for predicting corneal curvature (K1) and astigmatism in patients with keratoconus after intracorneal ring implantation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Valdés Mas, María Ángeles es_ES
dc.contributor.author Martin-Guerrero, J. D. es_ES
dc.contributor.author Rupérez Moreno, María José es_ES
dc.contributor.author Pastor, F es_ES
dc.contributor.author Dualde, C. es_ES
dc.contributor.author Monserrat, C. es_ES
dc.contributor.author Peris-Martinez, C. es_ES
dc.date.accessioned 2015-06-15T08:49:32Z
dc.date.available 2015-06-15T08:49:32Z
dc.date.issued 2014-08
dc.identifier.issn 0169-2607
dc.identifier.uri http://hdl.handle.net/10251/51684
dc.description.abstract Keratoconus (KC) is the most common type of corneal ectasia. A corneal transplantation was the treatment of choice until the last decade. However, intra-corneal ring implantation has become more and more common, and it is commonly used to treat KC thus avoiding a corneal transplantation. This work proposes a new approach based on Machine Learning to predict the vision gain of KC patients after ring implantation. That vision gain is assessed by means of the corneal curvature and the astigmatism. Different models were proposed; the best results were achieved by an artificial neural network based on the Multilayer Perceptron. The error provided by the best model was 0.97D of corneal curvature and 0.93D of astigmatism. © 2014 Elsevier Ireland Ltd. All rights reserved. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Science and Innovation, MICINN (reference TIN2010-20999-C04-01). en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods and Programs in Biomedicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Machine Learning es_ES
dc.subject Keratoconus es_ES
dc.subject Intracorneal rings es_ES
dc.subject Astigmatism es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A new approach based on Machine Learning for predicting corneal curvature (K1) and astigmatism in patients with keratoconus after intracorneal ring implantation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cmpb.2014.04.003
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2010-20999-C04-01/ES/MODELIZACION BIOMECANICA DE TEJIDOS APLICADO A CIRUGIA ASISTIDA POR ORDENADOR/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Valdés Mas, MÁ.; Martin-Guerrero, JD.; Rupérez Moreno, MJ.; Pastor, F.; Dualde, C.; Monserrat, C.; Peris-Martinez, C. (2014). A new approach based on Machine Learning for predicting corneal curvature (K1) and astigmatism in patients with keratoconus after intracorneal ring implantation. Computer Methods and Programs in Biomedicine. 116(1):39-47. https://doi.org/10.1016/j.cmpb.2014.04.003 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.cmpb.2014.04.003 es_ES
dc.description.upvformatpinicio 39 es_ES
dc.description.upvformatpfin 47 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 116 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 267178
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem