Mostrar el registro sencillo del ítem
dc.contributor.author | Valdés Mas, María Ángeles | es_ES |
dc.contributor.author | Martin-Guerrero, J. D. | es_ES |
dc.contributor.author | Rupérez Moreno, María José | es_ES |
dc.contributor.author | Pastor, F | es_ES |
dc.contributor.author | Dualde, C. | es_ES |
dc.contributor.author | Monserrat, C. | es_ES |
dc.contributor.author | Peris-Martinez, C. | es_ES |
dc.date.accessioned | 2015-06-15T08:49:32Z | |
dc.date.available | 2015-06-15T08:49:32Z | |
dc.date.issued | 2014-08 | |
dc.identifier.issn | 0169-2607 | |
dc.identifier.uri | http://hdl.handle.net/10251/51684 | |
dc.description.abstract | Keratoconus (KC) is the most common type of corneal ectasia. A corneal transplantation was the treatment of choice until the last decade. However, intra-corneal ring implantation has become more and more common, and it is commonly used to treat KC thus avoiding a corneal transplantation. This work proposes a new approach based on Machine Learning to predict the vision gain of KC patients after ring implantation. That vision gain is assessed by means of the corneal curvature and the astigmatism. Different models were proposed; the best results were achieved by an artificial neural network based on the Multilayer Perceptron. The error provided by the best model was 0.97D of corneal curvature and 0.93D of astigmatism. © 2014 Elsevier Ireland Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Science and Innovation, MICINN (reference TIN2010-20999-C04-01). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computer Methods and Programs in Biomedicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Machine Learning | es_ES |
dc.subject | Keratoconus | es_ES |
dc.subject | Intracorneal rings | es_ES |
dc.subject | Astigmatism | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A new approach based on Machine Learning for predicting corneal curvature (K1) and astigmatism in patients with keratoconus after intracorneal ring implantation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cmpb.2014.04.003 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2010-20999-C04-01/ES/MODELIZACION BIOMECANICA DE TEJIDOS APLICADO A CIRUGIA ASISTIDA POR ORDENADOR/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Valdés Mas, MÁ.; Martin-Guerrero, JD.; Rupérez Moreno, MJ.; Pastor, F.; Dualde, C.; Monserrat, C.; Peris-Martinez, C. (2014). A new approach based on Machine Learning for predicting corneal curvature (K1) and astigmatism in patients with keratoconus after intracorneal ring implantation. Computer Methods and Programs in Biomedicine. 116(1):39-47. https://doi.org/10.1016/j.cmpb.2014.04.003 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.cmpb.2014.04.003 | es_ES |
dc.description.upvformatpinicio | 39 | es_ES |
dc.description.upvformatpfin | 47 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 116 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 267178 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |