- -

Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function

Mostrar el registro completo del ítem

Zarzoso Muñoz, M.; Rysevaite, K.; Milstein, ML.; Calvo Saiz, CJ.; Kean, AC.; Atienza Fernández, F.; Pauza, DH.... (2013). Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function. Cardiovascular Research. 566-575. doi:10.1093/cvr/cvt081

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/51792

Ficheros en el ítem

Metadatos del ítem

Título: Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function
Autor: Zarzoso Muñoz, Manuel Rysevaite, Kristina Milstein, Michelle L. Calvo Saiz, Conrado Javier Kean, Adam C. Atienza Fernández, Felipe Pauza, Dainius Haroldas Jalife, José Noujaim, Sami F.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació
Fecha difusión:
Resumen:
Rationale: Autonomic nerves from sinoatrial node (SAN) ganglia are known to regulate SAN function. However, it is unclear whether remote pulmonary vein ganglia (PVG) also modulate SAN pacemaker rhythm. Objective: To ...[+]
Palabras clave: Intrinsic cardiac ganglia , cardiac arrhythmias , optical mapping , sinoatrial node , pulmonary veins , mouse heart
Derechos de uso: Reserva de todos los derechos
Fuente:
Cardiovascular Research. (issn: 0008-6363 )
DOI: 10.1093/cvr/cvt081
Editorial:
Oxford University Press (OUP): Policy B
Versión del editor: http://dx.doi.org/10.1093/cvr/cvt081
Tipo: Artículo

References

Johnson, T. A., Gray, A. L., Lauenstein, J.-M., Newton, S. S., & Massari, V. J. (2004). Parasympathetic control of the heart. I. An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. Journal of Applied Physiology, 96(6), 2265-2272. doi:10.1152/japplphysiol.00620.2003

Rysevaite, K., Saburkina, I., Pauziene, N., Noujaim, S. F., Jalife, J., & Pauza, D. H. (2011). Morphologic pattern of the intrinsic ganglionated nerve plexus in mouse heart. Heart Rhythm, 8(3), 448-454. doi:10.1016/j.hrthm.2010.11.019

Yuan, B.-X., Ardell, J. L., Hopkins, D. A., & Armour, J. A. (1993). Differential cardiac responses induced by nicotine sensitive canine atrial and ventricular neurones. Cardiovascular Research, 27(5), 760-769. doi:10.1093/cvr/27.5.760 [+]
Johnson, T. A., Gray, A. L., Lauenstein, J.-M., Newton, S. S., & Massari, V. J. (2004). Parasympathetic control of the heart. I. An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. Journal of Applied Physiology, 96(6), 2265-2272. doi:10.1152/japplphysiol.00620.2003

Rysevaite, K., Saburkina, I., Pauziene, N., Noujaim, S. F., Jalife, J., & Pauza, D. H. (2011). Morphologic pattern of the intrinsic ganglionated nerve plexus in mouse heart. Heart Rhythm, 8(3), 448-454. doi:10.1016/j.hrthm.2010.11.019

Yuan, B.-X., Ardell, J. L., Hopkins, D. A., & Armour, J. A. (1993). Differential cardiac responses induced by nicotine sensitive canine atrial and ventricular neurones. Cardiovascular Research, 27(5), 760-769. doi:10.1093/cvr/27.5.760

Rysevaite, K., Saburkina, I., Pauziene, N., Vaitkevicius, R., Noujaim, S. F., Jalife, J., & Pauza, D. H. (2011). Immunohistochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart Rhythm, 8(5), 731-738. doi:10.1016/j.hrthm.2011.01.013

Pauza, D. H., Pauziene, N., Pakeltyte, G., & Stropus, R. (2002). Comparative quantitative study of the intrinsic cardiac ganglia and neurons in the rat, guinea pig, dog and human as revealed by histochemical staining for acetylcholinesterase. Annals of Anatomy - Anatomischer Anzeiger, 184(2), 125-136. doi:10.1016/s0940-9602(02)80005-x

Pauza, D. H., Skripka, V., & Pauziene, N. (2002). Morphology of the Intrinsic Cardiac Nervous System in the Dog: A Whole-Mount Study Employing Histochemical Staining with Acetylcholinesterase. Cells Tissues Organs, 172(4), 297-320. doi:10.1159/000067198

Arora, R. C., Waldmann, M., Hopkins, D. A., & Armour, J. A. (2003). Porcine intrinsic cardiac ganglia. The Anatomical Record, 271A(1), 249-258. doi:10.1002/ar.a.10030

Gatti, P. J., Johnson, T. A., & John Massari, V. (1996). Can neurons in the nucleus ambiguus selectively regulate cardiac rate and atrio-ventricular conduction? Journal of the Autonomic Nervous System, 57(1-2), 123-127. doi:10.1016/0165-1838(95)00104-2

Zhuang, S., Zhang, Y., Mowrey, K. A., Li, J., Tabata, T., Wallick, D. W., … Mazgalev, T. N. (2002). Ventricular Rate Control by Selective Vagal Stimulation Is Superior to Rhythm Regularization by Atrioventricular Nodal Ablation and Pacing During Atrial Fibrillation. Circulation, 106(14), 1853-1858. doi:10.1161/01.cir.0000031802.58532.04

CHEN, J., WASMUND, S. L., & HAMDAN, M. H. (2006). Back to the Future: The Role of the Autonomic Nervous System in Atrial Fibrillation. Pacing and Clinical Electrophysiology, 29(4), 413-421. doi:10.1111/j.1540-8159.2006.00362.x

Armour, J. A. (2008). Potential clinical relevance of the ‘little brain’ on the mammalian heart. Experimental Physiology, 93(2), 165-176. doi:10.1113/expphysiol.2007.041178

LAZZARA, R., SCHERLAG, B. J., ROBINSON, M. J., & SAMET, P. (1973). Selective In Situ Parasympathetic Control of the Canine Sinoatrial and Atrioventricular Nodes. Circulation Research, 32(3), 393-401. doi:10.1161/01.res.32.3.393

Gray, A. L., Johnson, T. A., Ardell, J. L., & Massari, V. J. (2004). Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. Journal of Applied Physiology, 96(6), 2273-2278. doi:10.1152/japplphysiol.00616.2003

Pappone, C., Santinelli, V., Manguso, F., Vicedomini, G., Gugliotta, F., Augello, G., … Alfieri, O. (2004). Pulmonary Vein Denervation Enhances Long-Term Benefit After Circumferential Ablation for Paroxysmal Atrial Fibrillation. Circulation, 109(3), 327-334. doi:10.1161/01.cir.0000112641.16340.c7

MIQUEROL, L., MEYSEN, S., MANGONI, M., BOIS, P., VANRIJEN, H., ABRAN, P., … GROS, D. (2004). Architectural and functional asymmetry of the His–Purkinje system of the murine heart. Cardiovascular Research, 63(1), 77-86. doi:10.1016/j.cardiores.2004.03.007

Jalife, J., Slenter, V. A., Salata, J. J., & Michaels, D. C. (1983). Dynamic vagal control of pacemaker activity in the mammalian sinoatrial node. Circulation Research, 52(6), 642-656. doi:10.1161/01.res.52.6.642

Fedorov, V. V., Hucker, W. J., Dobrzynski, H., Rosenshtraukh, L. V., & Efimov, I. R. (2006). Postganglionic nerve stimulation induces temporal inhibition of excitability in rabbit sinoatrial node. American Journal of Physiology-Heart and Circulatory Physiology, 291(2), H612-H623. doi:10.1152/ajpheart.00022.2006

Saburkina, I., & Pauza, D. H. (2006). Location and variability of epicardiac ganglia in human fetuses. Anatomy and Embryology, 211(6), 585-594. doi:10.1007/s00429-006-0110-4

Slavíková, J., Kuncová, J., Reischig, J., & Dvořáková, M. (2003). Neurochemical Research, 28(3/4), 593-598. doi:10.1023/a:1022837810357

Tan, A. Y., Li, H., Wachsmann-Hogiu, S., Chen, L. S., Chen, P.-S., & Fishbein, M. C. (2006). Autonomic Innervation and Segmental Muscular Disconnections at the Human Pulmonary Vein-Atrial Junction. Journal of the American College of Cardiology, 48(1), 132-143. doi:10.1016/j.jacc.2006.02.054

Vaitkevicius, R., Saburkina, I., Rysevaite, K., Vaitkeviciene, I., Pauziene, N., Zaliunas, R., … Pauza, D. H. (2009). Nerve Supply of the Human Pulmonary Veins: An Anatomical Study. Heart Rhythm, 6(2), 221-228. doi:10.1016/j.hrthm.2008.10.027

Mabe, A. M., & Hoover, D. B. (2009). Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice. Cardiovascular Research, 82(1), 93-99. doi:10.1093/cvr/cvp029

Beau, S. L., Hand, D. E., Schuessler, R. B., Bromberg, B. I., Kwon, B., Boineau, J. P., & Saffitz, J. E. (1995). Relative Densities of Muscarinic Cholinergic and β-Adrenergic Receptors in the Canine Sinoatrial Node and Their Relation to Sites of Pacemaker Activity. Circulation Research, 77(5), 957-963. doi:10.1161/01.res.77.5.957

Mangoni, M. E., & Nargeot, J. (2008). Genesis and Regulation of the Heart Automaticity. Physiological Reviews, 88(3), 919-982. doi:10.1152/physrev.00018.2007

Brack, K. E., Coote, J. H., & Ng, G. A. (2003). Interaction between direct sympathetic and vagus nerve stimulation on heart rate in the isolated rabbit heart. Experimental Physiology, 89(1), 128-139. doi:10.1113/expphysiol.2003.002654

Levy, M. N., & Zieske, H. (1969). Autonomic control of cardiac pacemaker activity and atrioventricular transmission. Journal of Applied Physiology, 27(4), 465-470. doi:10.1152/jappl.1969.27.4.465

Hartzell, H. C. (1988). Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Progress in Biophysics and Molecular Biology, 52(3), 165-247. doi:10.1016/0079-6107(88)90014-4

LEVY, M. N., YANG, T., & WALLICK, D. W. (1993). Assessment of Beat-by-Beat Control of Heart Rate by the Autonomic Nervous System: Molecular Biology Techniques Are Necessary, But Not Sufficient. Journal of Cardiovascular Electrophysiology, 4(2), 183-193. doi:10.1111/j.1540-8167.1993.tb01222.x

Levy, M. N. (1971). Brief Reviews. Circulation Research, 29(5), 437-445. doi:10.1161/01.res.29.5.437

Ng, G. A., Brack, K. E., & Coote, J. H. (2001). Effects of Direct Sympathetic and Vagus Nerve Stimulation on the Physiology of the Whole Heart - A Novel Model of Isolated Langendorff Perfused Rabbit Heart with Intact Dual Autonomic Innervation. Experimental Physiology, 86(3), 319-329. doi:10.1113/eph8602146

Goldberg, J. (1975). Intra-SA-nodal pacemaker shifts induced by autonomic nerve stimulation in the dog. American Journal of Physiology-Legacy Content, 229(4), 1116-1123. doi:10.1152/ajplegacy.1975.229.4.1116

Shibata, N., Inada, S., Mitsui, K., Honjo, H., Yamamoto, M., Niwa, R., … Kodama, I. (2001). Pacemaker Shift in the Rabbit Sinoatrial Node in Response to Vagal Nerve Stimulation. Experimental Physiology, 86(2), 177-184. doi:10.1113/eph8602100

Glukhov, A. V., Fedorov, V. V., Anderson, M. E., Mohler, P. J., & Efimov, I. R. (2010). Functional anatomy of the murine sinus node: high-resolution optical mapping of ankyrin-B heterozygous mice. American Journal of Physiology-Heart and Circulatory Physiology, 299(2), H482-H491. doi:10.1152/ajpheart.00756.2009

Michaels, D. C., Matyas, E. P., & Jalife, J. (1987). Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis. Circulation Research, 61(5), 704-714. doi:10.1161/01.res.61.5.704

Boyett, M. (2000). The sinoatrial node, a heterogeneous pacemaker structure. Cardiovascular Research, 47(4), 658-687. doi:10.1016/s0008-6363(00)00135-8

Lemery, R., Birnie, D., Tang, A. S. L., Green, M., & Gollob, M. (2006). Feasibility study of endocardial mapping of ganglionated plexuses during catheter ablation of atrial fibrillation. Heart Rhythm, 3(4), 387-396. doi:10.1016/j.hrthm.2006.01.009

Pokushalov, E., Romanov, A., Shugayev, P., Artyomenko, S., Shirokova, N., Turov, A., & Katritsis, D. G. (2009). Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm, 6(9), 1257-1264. doi:10.1016/j.hrthm.2009.05.018

Scherlag, B. J., Nakagawa, H., Jackman, W. M., Yamanashi, W. S., Patterson, E., Po, S., & Lazzara, R. (2005). Electrical Stimulation to Identify Neural Elements on the Heart: Their Role in Atrial Fibrillation. Journal of Interventional Cardiac Electrophysiology, 13(S1), 37-42. doi:10.1007/s10840-005-2492-2

Puodziukynas, A., Kazakevicius, T., Vaitkevicius, R., Rysevaite, K., Jokubauskas, M., Saburkina, I., … Pauza, D. H. (2012). Radiofrequency catheter ablation of pulmonary vein roots results in axonal degeneration of distal epicardial nerves. Autonomic Neuroscience, 167(1-2), 61-65. doi:10.1016/j.autneu.2012.01.001

Bauer, A., Deisenhofer, I., Schneider, R., Zrenner, B., Barthel, P., Karch, M., … Schmidt, G. (2006). Effects of circumferential or segmental pulmonary vein ablation for paroxysmal atrial fibrillation on cardiac autonomic function. Heart Rhythm, 3(12), 1428-1435. doi:10.1016/j.hrthm.2006.08.025

Armour, J. A. (2010). Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Heart Rhythm, 7(7), 994-996. doi:10.1016/j.hrthm.2010.02.014

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem