Mostrar el registro sencillo del ítem
dc.contributor.author | Bru García, Rafael | es_ES |
dc.contributor.author | Cantó Colomina, Rafael | es_ES |
dc.contributor.author | Soto, Ricardo L. | es_ES |
dc.contributor.author | Urbano Salvador, Ana María | es_ES |
dc.date.accessioned | 2015-06-18T08:54:48Z | |
dc.date.available | 2015-06-18T08:54:48Z | |
dc.date.issued | 2012-02 | |
dc.identifier.issn | 1895-1074 | |
dc.identifier.uri | http://hdl.handle.net/10251/51870 | |
dc.description.abstract | Given a square matrix A, a Brauer's theorem [Brauer A., Limits for the characteristic roots of a matrix. IV. Applications to stochastic matrices, Duke Math. J., 1952, 19(1), 75-91] shows how to modify one single eigenvalue of A via a rank-one perturbation without changing any of the remaining eigenvalues. Older and newer results can be considered in the framework of the above theorem. In this paper, we present its application to stabilization of control systems, including the case when the system is noncontrollable. Other applications presented are related to the Jordan form of A and Wielandt's and Hotelling's deflations. An extension of the aforementioned Brauer's result, Rado's theorem, shows how to modify r eigenvalues of A at the same time via a rank-r perturbation without changing any of the remaining eigenvalues. The same results considered by blocks can be put into the block version framework of the above theorem. © 2012 Versita Warsaw and Springer-Verlag Wien. | es_ES |
dc.description.sponsorship | This work is supported by Fondecyt 1085125, Chile, the Spanish grant DGI MTM2010-18228 and the Programa de Apoyo a la Investigacion y Desarrollo (PAID-06-10) of the UPV. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Central European Journal of Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Controllability | es_ES |
dc.subject | Deflation techniques | es_ES |
dc.subject | Eigenvalues | es_ES |
dc.subject | Low rank perturbation | es_ES |
dc.subject | Pole assignment problem | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A Brauer's theorem and related results | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2478/s11533-011-0113-0 | |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//1085125/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-10/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-18228/ES/PROPIEDADES MATRICIALES CON APLICACION A LA TEORIA DE CONTROL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bru García, R.; Cantó Colomina, R.; Soto, RL.; Urbano Salvador, AM. (2012). A Brauer's theorem and related results. Central European Journal of Mathematics. 10(1):312-321. https://doi.org/10.2478/s11533-011-0113-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.2478/s11533-011-0113-0 | es_ES |
dc.description.upvformatpinicio | 312 | es_ES |
dc.description.upvformatpfin | 321 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 209144 | |
dc.identifier.eissn | 1644-3616 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Brauer A., Limits for the characteristic roots of a matrix. IV. Applications to stochastic matrices, Duke Math. J., 1952, 19(1), 75–91 | es_ES |
dc.description.references | Crouch P.E., Introduction to Mathematical Systems Theory, Mathematik-Arbeitspapiere, Bremen, 1988 | es_ES |
dc.description.references | Delchamps D.F., State-Space and Input-Output Linear Systems, Springer, New York, 1988 | es_ES |
dc.description.references | Hautus M.L.J., Controllability and observability condition of linear autonomous systems, Nederl. Akad. Wetensch. Indag. Math., 1969, 72, 443–448 | es_ES |
dc.description.references | Kailath T., Linear Systems, Prentice Hall Inform. System Sci. Ser., Prentice Hall, Englewood Cliffs, 1980 | es_ES |
dc.description.references | Langville A.N., Meyer C.D., Deeper inside PageRank, Internet Math., 2004, 1(3), 335–380 | es_ES |
dc.description.references | Perfect H., Methods of constructing certain stochastic matrices. II, Duke Math. J., 1955, 22(2), 305–311 | es_ES |
dc.description.references | Saad Y., Numerical Methods for Large Eigenvalue Problems, Classics Appl. Math., 66, SIAM, Philadelphia, 2011 | es_ES |
dc.description.references | Soto R.L., Rojo O., Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem, Linear Algebra Appl., 2006, 416(2–3), 844–856 | es_ES |
dc.description.references | Wilkinson J.H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965 | es_ES |