- -

Autonomous artificial nanomotor powered by sunlight

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Autonomous artificial nanomotor powered by sunlight

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Balzani, V. es_ES
dc.contributor.author Clemente-Leon, M. es_ES
dc.contributor.author Credi, A. es_ES
dc.contributor.author Ferrer Ribera, Rosa Belén es_ES
dc.contributor.author Venturi, M. es_ES
dc.contributor.author Flood, A.H. es_ES
dc.contributor.author Stoddart, J.F. es_ES
dc.date.accessioned 2015-06-19T10:54:45Z
dc.date.available 2015-06-19T10:54:45Z
dc.date.issued 2006-01-31
dc.identifier.issn 0027-8424
dc.identifier.uri http://hdl.handle.net/10251/51954
dc.description.abstract Light excitation powers the reversible shuttling movement of the ring component of a rotaxane between two stations located at a 1.3-nm distance on its dumbbell-shaped component. The photoinduced shuttling movement, which occurs in solution, is based on a "four-stroke" synchronized sequence of electronic and nuclear processes. At room temperature the deactivation time of the high-energy charge-transfer state obtained by light excitation is approximate to 10 mu s, and the time period required for the ring-displacement process is on the order of 100. mu s. The rotaxane behaves as an autonomous linear motor and operates with a quantum efficiency up to approximate to 12%. The investigated system is a unique example of an artificial linear nanomotor because it gathers together the following features: (i) it is powered by visible light (e.g., sunlight); (h) it exhibits autonomous behavior, like motor proteins; (iii) it does not generate waste products; (iv) its operation can rely only on intramolecular processes, allowing in principle operation at the single-molecule level; (v) it can be driven at a frequency of 1 kHz; (vi) it works in mild environmental conditions (i.e., fluid solution at ambient temperature); and (vii) it is stable for at least 10(3) cycles. es_ES
dc.language Inglés es_ES
dc.publisher National Academy of Sciences es_ES
dc.relation.ispartof Proceedings of the National Academy of Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Molecular machine es_ES
dc.subject Nanoscience es_ES
dc.subject Photochemistry es_ES
dc.subject Rotaxane es_ES
dc.subject Supramolecular chemistry es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Autonomous artificial nanomotor powered by sunlight es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1073/pnas.0509011103
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Balzani, V.; Clemente-Leon, M.; Credi, A.; Ferrer Ribera, RB.; Venturi, M.; Flood, A.; Stoddart, J. (2006). Autonomous artificial nanomotor powered by sunlight. Proceedings of the National Academy of Sciences. 103(5):1178-1183. doi:10.1073/pnas.0509011103 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1073/pnas.0509011103 es_ES
dc.description.upvformatpinicio 1178 es_ES
dc.description.upvformatpfin 1183 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 103 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 36001
dc.identifier.pmid 16432207 es_ES
dc.identifier.pmcid PMC1360556 en_EN
dc.description.references Balzani, V., Credi, A., Raymo, F. M., & Stoddart, J. F. (2000). Artificial Molecular Machines. Angewandte Chemie, 39(19), 3348-3391. doi:10.1002/1521-3773(20001002)39:19<3348::aid-anie3348>3.0.co;2-x es_ES
dc.description.references Molecular Machines Special Issue. (2001). Accounts of Chemical Research, 34(6), 409-409. doi:10.1021/ar0100881 es_ES
dc.description.references Joachim, C., & Gimzewski, J. K. (s. f.). Single Molecular Rotor at the Nanoscale. Structure and Bonding, 1-18. doi:10.1007/3-540-44421-1_1 es_ES
dc.description.references Balzani, V., Credi, A., Ferrer, B., Silvi, S., & Venturi, M. (s. f.). Artificial Molecular Motors and Machines: Design Principles and Prototype Systems. Topics in Current Chemistry, 1-27. doi:10.1007/128_008 es_ES
dc.description.references Oster, G., & Wang, H. (2003). Rotary protein motors. Trends in Cell Biology, 13(3), 114-121. doi:10.1016/s0962-8924(03)00004-7 es_ES
dc.description.references Lehn, J.-M. (2002). Toward complex matter: Supramolecular chemistry and self-organization. Proceedings of the National Academy of Sciences, 99(8), 4763-4768. doi:10.1073/pnas.072065599 es_ES
dc.description.references Steinberg-Yfrach, G., Rigaud, J.-L., Durantini, E. N., Moore, A. L., Gust, D., & Moore, T. A. (1998). Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature, 392(6675), 479-482. doi:10.1038/33116 es_ES
dc.description.references Kelly, T. R., De Silva, H., & Silva, R. A. (1999). Unidirectional rotary motion in a molecular system. Nature, 401(6749), 150-152. doi:10.1038/43639 es_ES
dc.description.references Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N., & Feringa, B. L. (1999). Light-driven monodirectional molecular rotor. Nature, 401(6749), 152-155. doi:10.1038/43646 es_ES
dc.description.references Brouwer, A. M. (2001). Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle. Science, 291(5511), 2124-2128. doi:10.1126/science.1057886 es_ES
dc.description.references Badjic, J. D. (2004). A Molecular Elevator. Science, 303(5665), 1845-1849. doi:10.1126/science.1094791 es_ES
dc.description.references Hernandez, J. V. (2004). A Reversible Synthetic Rotary Molecular Motor. Science, 306(5701), 1532-1537. doi:10.1126/science.1103949 es_ES
dc.description.references Mobian, P., Kern, J.-M., & Sauvage, J.-P. (2004). Light-Driven Machine Prototypes Based on Dissociative Excited States: Photoinduced Decoordination and Thermal Recoordination of a Ring in a Ruthenium(II)-Containing[2]Catenane. Angewandte Chemie International Edition, 43(18), 2392-2395. doi:10.1002/anie.200352522 es_ES
dc.description.references Sherman, W. B., & Seeman, N. C. (2004). A Precisely Controlled DNA Biped Walking Device. Nano Letters, 4(7), 1203-1207. doi:10.1021/nl049527q es_ES
dc.description.references Astumian, R. D. (2005). Chemical peristalsis. Proceedings of the National Academy of Sciences, 102(6), 1843-1847. doi:10.1073/pnas.0409341102 es_ES
dc.description.references Zheng, X., Mulcahy, M. E., Horinek, D., Galeotti, F., Magnera, T. F., & Michl, J. (2004). Dipolar and Nonpolar Altitudinal Molecular Rotors Mounted on an Au(111) Surface. Journal of the American Chemical Society, 126(14), 4540-4542. doi:10.1021/ja039482f es_ES
dc.description.references Katz, E., Lioubashevsky, O., & Willner, I. (2004). Electromechanics of a Redox-Active Rotaxane in a Monolayer Assembly on an Electrode. Journal of the American Chemical Society, 126(47), 15520-15532. doi:10.1021/ja045465u es_ES
dc.description.references Van Delden, R. A., ter Wiel, M. K. J., Pollard, M. M., Vicario, J., Koumura, N., & Feringa, B. L. (2005). Unidirectional molecular motor on a gold surface. Nature, 437(7063), 1337-1340. doi:10.1038/nature04127 es_ES
dc.description.references Liu, Y., Flood, A. H., Bonvallet, P. A., Vignon, S. A., Northrop, B. H., Tseng, H.-R., … Stoddart, J. F. (2005). Linear Artificial Molecular Muscles. Journal of the American Chemical Society, 127(27), 9745-9759. doi:10.1021/ja051088p es_ES
dc.description.references Nguyen, T. D., Tseng, H.-R., Celestre, P. C., Flood, A. H., Liu, Y., Stoddart, J. F., & Zink, J. I. (2005). A reversible molecular valve. Proceedings of the National Academy of Sciences, 102(29), 10029-10034. doi:10.1073/pnas.0504109102 es_ES
dc.description.references Berná, J., Leigh, D. A., Lubomska, M., Mendoza, S. M., Pérez, E. M., Rudolf, P., … Zerbetto, F. (2005). Macroscopic transport by synthetic molecular machines. Nature Materials, 4(9), 704-710. doi:10.1038/nmat1455 es_ES
dc.description.references Tian, Y., & Mao, C. (2004). Molecular Gears:  A Pair of DNA Circles Continuously Rolls against Each Other. Journal of the American Chemical Society, 126(37), 11410-11411. doi:10.1021/ja046507h es_ES
dc.description.references Ashton, P. R., Ballardini, R., Balzani, V., Credi, A., Dress, K. R., Ishow, E., … Wenger, S. (2000). Chemistry - A European Journal, 6(19), 3558-3574. doi:10.1002/1521-3765(20001002)6:19<3558::aid-chem3558>3.0.co;2-m es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem