Mostrar el registro sencillo del ítem
dc.contributor.author | Balzani, V. | es_ES |
dc.contributor.author | Clemente-Leon, M. | es_ES |
dc.contributor.author | Credi, A. | es_ES |
dc.contributor.author | Ferrer Ribera, Rosa Belén | es_ES |
dc.contributor.author | Venturi, M. | es_ES |
dc.contributor.author | Flood, A.H. | es_ES |
dc.contributor.author | Stoddart, J.F. | es_ES |
dc.date.accessioned | 2015-06-19T10:54:45Z | |
dc.date.available | 2015-06-19T10:54:45Z | |
dc.date.issued | 2006-01-31 | |
dc.identifier.issn | 0027-8424 | |
dc.identifier.uri | http://hdl.handle.net/10251/51954 | |
dc.description.abstract | Light excitation powers the reversible shuttling movement of the ring component of a rotaxane between two stations located at a 1.3-nm distance on its dumbbell-shaped component. The photoinduced shuttling movement, which occurs in solution, is based on a "four-stroke" synchronized sequence of electronic and nuclear processes. At room temperature the deactivation time of the high-energy charge-transfer state obtained by light excitation is approximate to 10 mu s, and the time period required for the ring-displacement process is on the order of 100. mu s. The rotaxane behaves as an autonomous linear motor and operates with a quantum efficiency up to approximate to 12%. The investigated system is a unique example of an artificial linear nanomotor because it gathers together the following features: (i) it is powered by visible light (e.g., sunlight); (h) it exhibits autonomous behavior, like motor proteins; (iii) it does not generate waste products; (iv) its operation can rely only on intramolecular processes, allowing in principle operation at the single-molecule level; (v) it can be driven at a frequency of 1 kHz; (vi) it works in mild environmental conditions (i.e., fluid solution at ambient temperature); and (vii) it is stable for at least 10(3) cycles. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | National Academy of Sciences | es_ES |
dc.relation.ispartof | Proceedings of the National Academy of Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Molecular machine | es_ES |
dc.subject | Nanoscience | es_ES |
dc.subject | Photochemistry | es_ES |
dc.subject | Rotaxane | es_ES |
dc.subject | Supramolecular chemistry | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Autonomous artificial nanomotor powered by sunlight | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1073/pnas.0509011103 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Balzani, V.; Clemente-Leon, M.; Credi, A.; Ferrer Ribera, RB.; Venturi, M.; Flood, A.; Stoddart, J. (2006). Autonomous artificial nanomotor powered by sunlight. Proceedings of the National Academy of Sciences. 103(5):1178-1183. doi:10.1073/pnas.0509011103 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1073/pnas.0509011103 | es_ES |
dc.description.upvformatpinicio | 1178 | es_ES |
dc.description.upvformatpfin | 1183 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 103 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 36001 | |
dc.identifier.pmid | 16432207 | es_ES |
dc.identifier.pmcid | PMC1360556 | en_EN |
dc.description.references | Balzani, V., Credi, A., Raymo, F. M., & Stoddart, J. F. (2000). Artificial Molecular Machines. Angewandte Chemie, 39(19), 3348-3391. doi:10.1002/1521-3773(20001002)39:19<3348::aid-anie3348>3.0.co;2-x | es_ES |
dc.description.references | Molecular Machines Special Issue. (2001). Accounts of Chemical Research, 34(6), 409-409. doi:10.1021/ar0100881 | es_ES |
dc.description.references | Joachim, C., & Gimzewski, J. K. (s. f.). Single Molecular Rotor at the Nanoscale. Structure and Bonding, 1-18. doi:10.1007/3-540-44421-1_1 | es_ES |
dc.description.references | Balzani, V., Credi, A., Ferrer, B., Silvi, S., & Venturi, M. (s. f.). Artificial Molecular Motors and Machines: Design Principles and Prototype Systems. Topics in Current Chemistry, 1-27. doi:10.1007/128_008 | es_ES |
dc.description.references | Oster, G., & Wang, H. (2003). Rotary protein motors. Trends in Cell Biology, 13(3), 114-121. doi:10.1016/s0962-8924(03)00004-7 | es_ES |
dc.description.references | Lehn, J.-M. (2002). Toward complex matter: Supramolecular chemistry and self-organization. Proceedings of the National Academy of Sciences, 99(8), 4763-4768. doi:10.1073/pnas.072065599 | es_ES |
dc.description.references | Steinberg-Yfrach, G., Rigaud, J.-L., Durantini, E. N., Moore, A. L., Gust, D., & Moore, T. A. (1998). Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature, 392(6675), 479-482. doi:10.1038/33116 | es_ES |
dc.description.references | Kelly, T. R., De Silva, H., & Silva, R. A. (1999). Unidirectional rotary motion in a molecular system. Nature, 401(6749), 150-152. doi:10.1038/43639 | es_ES |
dc.description.references | Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N., & Feringa, B. L. (1999). Light-driven monodirectional molecular rotor. Nature, 401(6749), 152-155. doi:10.1038/43646 | es_ES |
dc.description.references | Brouwer, A. M. (2001). Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle. Science, 291(5511), 2124-2128. doi:10.1126/science.1057886 | es_ES |
dc.description.references | Badjic, J. D. (2004). A Molecular Elevator. Science, 303(5665), 1845-1849. doi:10.1126/science.1094791 | es_ES |
dc.description.references | Hernandez, J. V. (2004). A Reversible Synthetic Rotary Molecular Motor. Science, 306(5701), 1532-1537. doi:10.1126/science.1103949 | es_ES |
dc.description.references | Mobian, P., Kern, J.-M., & Sauvage, J.-P. (2004). Light-Driven Machine Prototypes Based on Dissociative Excited States: Photoinduced Decoordination and Thermal Recoordination of a Ring in a Ruthenium(II)-Containing[2]Catenane. Angewandte Chemie International Edition, 43(18), 2392-2395. doi:10.1002/anie.200352522 | es_ES |
dc.description.references | Sherman, W. B., & Seeman, N. C. (2004). A Precisely Controlled DNA Biped Walking Device. Nano Letters, 4(7), 1203-1207. doi:10.1021/nl049527q | es_ES |
dc.description.references | Astumian, R. D. (2005). Chemical peristalsis. Proceedings of the National Academy of Sciences, 102(6), 1843-1847. doi:10.1073/pnas.0409341102 | es_ES |
dc.description.references | Zheng, X., Mulcahy, M. E., Horinek, D., Galeotti, F., Magnera, T. F., & Michl, J. (2004). Dipolar and Nonpolar Altitudinal Molecular Rotors Mounted on an Au(111) Surface. Journal of the American Chemical Society, 126(14), 4540-4542. doi:10.1021/ja039482f | es_ES |
dc.description.references | Katz, E., Lioubashevsky, O., & Willner, I. (2004). Electromechanics of a Redox-Active Rotaxane in a Monolayer Assembly on an Electrode. Journal of the American Chemical Society, 126(47), 15520-15532. doi:10.1021/ja045465u | es_ES |
dc.description.references | Van Delden, R. A., ter Wiel, M. K. J., Pollard, M. M., Vicario, J., Koumura, N., & Feringa, B. L. (2005). Unidirectional molecular motor on a gold surface. Nature, 437(7063), 1337-1340. doi:10.1038/nature04127 | es_ES |
dc.description.references | Liu, Y., Flood, A. H., Bonvallet, P. A., Vignon, S. A., Northrop, B. H., Tseng, H.-R., … Stoddart, J. F. (2005). Linear Artificial Molecular Muscles. Journal of the American Chemical Society, 127(27), 9745-9759. doi:10.1021/ja051088p | es_ES |
dc.description.references | Nguyen, T. D., Tseng, H.-R., Celestre, P. C., Flood, A. H., Liu, Y., Stoddart, J. F., & Zink, J. I. (2005). A reversible molecular valve. Proceedings of the National Academy of Sciences, 102(29), 10029-10034. doi:10.1073/pnas.0504109102 | es_ES |
dc.description.references | Berná, J., Leigh, D. A., Lubomska, M., Mendoza, S. M., Pérez, E. M., Rudolf, P., … Zerbetto, F. (2005). Macroscopic transport by synthetic molecular machines. Nature Materials, 4(9), 704-710. doi:10.1038/nmat1455 | es_ES |
dc.description.references | Tian, Y., & Mao, C. (2004). Molecular Gears: A Pair of DNA Circles Continuously Rolls against Each Other. Journal of the American Chemical Society, 126(37), 11410-11411. doi:10.1021/ja046507h | es_ES |
dc.description.references | Ashton, P. R., Ballardini, R., Balzani, V., Credi, A., Dress, K. R., Ishow, E., … Wenger, S. (2000). Chemistry - A European Journal, 6(19), 3558-3574. doi:10.1002/1521-3765(20001002)6:19<3558::aid-chem3558>3.0.co;2-m | es_ES |