- -

Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques

Mostrar el registro completo del ítem

Rodríguez-Sotelo, JL.; Osorio-Forero, A.; Jiménez-Rodríguez, A.; Cuesta Frau, D.; Cirugeda Roldán, EM.; Peluffo, D. (2014). Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques. Entropy. 16(12):6573-6589. https://doi.org/10.3390/e16126573

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/52087

Ficheros en el ítem

Metadatos del ítem

Título: Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques
Autor: Rodríguez-Sotelo, Jose Luis Osorio-Forero, Alejandro Jiménez-Rodríguez, Alejandro Cuesta Frau, David Cirugeda Roldán, Eva María Peluffo, Diego
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
Sleep is a growing area of research interest in medicine and neuroscience. Actually, one major concern is to find a correlation between several physiologic variables and sleep stages. There is a scientific agreement on the ...[+]
Palabras clave: Sleep stages , Feature extraction , Signal entropy , Feature selection , Relevance analysis , Q-alpha , Clustering
Derechos de uso: Reserva de todos los derechos
Fuente:
Entropy. (issn: 1099-4300 )
DOI: 10.3390/e16126573
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/e16126573
Código del Proyecto:
info:eu-repo/grantAgreement/UAM//328-038/
info:eu-repo/grantAgreement/MICINN//TEC2009-14222/ES/Interpretacion Y Caracterizacion De Metodos De Analisis De Complejidad En El Contexto Del Procesado Biomedico De La Señal/ /
Agradecimientos:
The authors would like to thank Universidad Autonoma de Manizales for financial support in the present work (Research project 328-038). This work has also been supported by the Spanish Ministry of Science and Innovation, ...[+]
Tipo: Artículo

References

Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J., & Scammell, T. E. (2010). Sleep State Switching. Neuron, 68(6), 1023-1042. doi:10.1016/j.neuron.2010.11.032

RAUCHS, G., DESGRANGES, B., FORET, J., & EUSTACHE, F. (2005). The relationships between memory systems and sleep stages. Journal of Sleep Research, 14(2), 123-140. doi:10.1111/j.1365-2869.2005.00450.x

Landmann, N., Kuhn, M., Piosczyk, H., Feige, B., Baglioni, C., Spiegelhalder, K., … Nissen, C. (2014). The reorganisation of memory during sleep. Sleep Medicine Reviews, 18(6), 531-541. doi:10.1016/j.smrv.2014.03.005 [+]
Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J., & Scammell, T. E. (2010). Sleep State Switching. Neuron, 68(6), 1023-1042. doi:10.1016/j.neuron.2010.11.032

RAUCHS, G., DESGRANGES, B., FORET, J., & EUSTACHE, F. (2005). The relationships between memory systems and sleep stages. Journal of Sleep Research, 14(2), 123-140. doi:10.1111/j.1365-2869.2005.00450.x

Landmann, N., Kuhn, M., Piosczyk, H., Feige, B., Baglioni, C., Spiegelhalder, K., … Nissen, C. (2014). The reorganisation of memory during sleep. Sleep Medicine Reviews, 18(6), 531-541. doi:10.1016/j.smrv.2014.03.005

Hublin, C., Partinen, M., Koskenvuo, M., & Kaprio, J. (2007). Sleep and Mortality: A Population-Based 22-Year Follow-Up Study. Sleep, 30(10), 1245-1253. doi:10.1093/sleep/30.10.1245

The role of polysomnography in the differential diagnosis of chronic insomnia. (1988). American Journal of Psychiatry, 145(3), 346-349. doi:10.1176/ajp.145.3.346

Steriade, M., McCormick, D., & Sejnowski, T. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134), 679-685. doi:10.1126/science.8235588

DANKER-HOPFE, H., ANDERER, P., ZEITLHOFER, J., BOECK, M., DORN, H., GRUBER, G., … DORFFNER, G. (2009). Interrater reliability for sleep scoring according to the Rechtschaffen & Kales and the new AASM standard. Journal of Sleep Research, 18(1), 74-84. doi:10.1111/j.1365-2869.2008.00700.x

Danker-Hopfe, H., Kunz, D., Gruber, G., Klösch, G., Lorenzo, J. L., Himanen, S. L., … Dorffner, G. (2004). Interrater reliability between scorers from eight European sleep laboratories in subjects with different sleep disorders. Journal of Sleep Research, 13(1), 63-69. doi:10.1046/j.1365-2869.2003.00375.x

Vuckovic, A., Radivojevic, V., Chen, A. C. N., & Popovic, D. (2002). Automatic recognition of alertness and drowsiness from EEG by an artificial neural network. Medical Engineering & Physics, 24(5), 349-360. doi:10.1016/s1350-4533(02)00030-9

Robert, C., Guilpin, C., & Limoge, A. (1998). Review of neural network applications in sleep research. Journal of Neuroscience Methods, 79(2), 187-193. doi:10.1016/s0165-0270(97)00178-7

Ronzhina, M., Janoušek, O., Kolářová, J., Nováková, M., Honzík, P., & Provazník, I. (2012). Sleep scoring using artificial neural networks. Sleep Medicine Reviews, 16(3), 251-263. doi:10.1016/j.smrv.2011.06.003

Subasi, A., & Erçelebi, E. (2005). Classification of EEG signals using neural network and logistic regression. Computer Methods and Programs in Biomedicine, 78(2), 87-99. doi:10.1016/j.cmpb.2004.10.009

Rodríguez-Sotelo, J. L., Peluffo-Ordoñez, D., Cuesta-Frau, D., & Castellanos-Domínguez, G. (2012). Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering. Computer Methods and Programs in Biomedicine, 108(1), 250-261. doi:10.1016/j.cmpb.2012.04.007

Kemp, B., Zwinderman, A. H., Tuk, B., Kamphuisen, H. A. C., & Oberye, J. J. L. (2000). Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Transactions on Biomedical Engineering, 47(9), 1185-1194. doi:10.1109/10.867928

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215

Van Sweden, B., Kemp, B., Kamphuisen, H. A. C., & Van der Velde, E. A. (1990). Alternative Electrode Placement in (Automatic) Sleep Scoring (F pz-Cz/P z-Oz versus C4-At ). Sleep, 13(3), 279-283. doi:10.1093/sleep/13.3.279

Mourtazaev, M. S., Kemp, B., Zwinderman, A. H., & Kamphuisen, H. A. C. (1995). Age and Gender Affect Different Characteristics of Slow Waves in the Sleep EEG. Sleep, 18(7), 557-564. doi:10.1093/sleep/18.7.557

Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., & Dickhaus, H. (2012). Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier. Computer Methods and Programs in Biomedicine, 108(1), 10-19. doi:10.1016/j.cmpb.2011.11.005

Shoupeng, S., & Peiwen, Q. (2007). A fractal-dimension-based signal-processing technique and its use for nondestructive testing. Russian Journal of Nondestructive Testing, 43(4), 270-280. doi:10.1134/s1061830907040080

Peng, C. ‐K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 82-87. doi:10.1063/1.166141

Fell, J., Röschke, J., Mann, K., & Schäffner, C. (1996). Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures. Electroencephalography and Clinical Neurophysiology, 98(5), 401-410. doi:10.1016/0013-4694(96)95636-9

Pincus, S. (1995). Approximate entropy (ApEn) as a complexity measure. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 110-117. doi:10.1063/1.166092

Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039

Costa, M., Goldberger, A. L., & Peng, C.-K. (2005). Multiscale entropy analysis of biological signals. Physical Review E, 71(2). doi:10.1103/physreve.71.021906

Hansen, P., & Mladenović, N. (2001). J-Means: a new local search heuristic for minimum sum of squares clustering. Pattern Recognition, 34(2), 405-413. doi:10.1016/s0031-3203(99)00216-2

Güneş, S., Polat, K., & Yosunkaya, Ş. (2010). Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting. Expert Systems with Applications, 37(12), 7922-7928. doi:10.1016/j.eswa.2010.04.043

Koley, B., & Dey, D. (2012). An ensemble system for automatic sleep stage classification using single channel EEG signal. Computers in Biology and Medicine, 42(12), 1186-1195. doi:10.1016/j.compbiomed.2012.09.012

Sleep stage classification using Wavelet Transform and neural networkhttp://www.researchgate.net/publication/216570220_Sleep_Stage_Classification_Using_Wavelet_Transform__Neural_Network

Krakovská, A., & Mezeiová, K. (2011). Automatic sleep scoring: A search for an optimal combination of measures. Artificial Intelligence in Medicine, 53(1), 25-33. doi:10.1016/j.artmed.2011.06.004

SHAMBROOM, J. R., FÁBREGAS, S. E., & JOHNSTONE, J. (2011). Validation of an automated wireless system to monitor sleep in healthy adults. Journal of Sleep Research, 21(2), 221-230. doi:10.1111/j.1365-2869.2011.00944.x

Swarnkar, V., & Abeyratne, U. R. (2014). Bispectral analysis of single channel EEG to estimate macro-sleep-architecture. International Journal of Medical Engineering and Informatics, 6(1), 43. doi:10.1504/ijmei.2014.058531

Liang, S.-F., Kuo, C.-E., Hu, Y.-H., Pan, Y.-H., & Wang, Y.-H. (2012). Automatic Stage Scoring of Single-Channel Sleep EEG by Using Multiscale Entropy and Autoregressive Models. IEEE Transactions on Instrumentation and Measurement, 61(6), 1649-1657. doi:10.1109/tim.2012.2187242

Weiss, B., Clemens, Z., Bódizs, R., & Halász, P. (2011). Comparison of fractal and power spectral EEG features: Effects of topography and sleep stages. Brain Research Bulletin, 84(6), 359-375. doi:10.1016/j.brainresbull.2010.12.005

Šušmáková, K., & Krakovská, A. (2008). Discrimination ability of individual measures used in sleep stages classification. Artificial Intelligence in Medicine, 44(3), 261-277. doi:10.1016/j.artmed.2008.07.005

Olbrich, E., Achermann, P., & Wennekers, T. (2011). The sleeping brain as a complex system. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1952), 3697-3707. doi:10.1098/rsta.2011.0199

Buckelmüller, J., Landolt, H.-P., Stassen, H. H., & Achermann, P. (2006). Trait-like individual differences in the human sleep electroencephalogram. Neuroscience, 138(1), 351-356. doi:10.1016/j.neuroscience.2005.11.005

Van Dongen, H. P. A., Vitellaro, K. M., & Dinges, D. F. (2005). Individual Differences in Adult Human Sleep and Wakefulness: Leitmotif for a Research Agenda. Sleep, 28(4), 479-498. doi:10.1093/sleep/28.4.479

A digital telemetry system for ambulatory sleep recordinghttp://physionet.mit.edu/pn4/sleep-edfx/Papers/1993-Kemp—telemetry.pdf

Dijk, D. J., Beersma, D. G. M., Daan, S., & van den Hoofdakker, R. H. (1989). Effects of seganserin, a 5-HT2 antagonist, and temazepam on human sleepsstages and EEG power spectra. European Journal of Pharmacology, 171(2-3), 207-218. doi:10.1016/0014-2999(89)90109-x

Zhang, Z., Chen, Z., Zhou, Y., Du, S., Zhang, Y., Mei, T., & Tian, X. (2014). Construction of rules for seizure prediction based on approximate entropy. Clinical Neurophysiology, 125(10), 1959-1966. doi:10.1016/j.clinph.2014.02.017

Khan, J., Mariappan, R., & Venkatraghavan, L. (2014). Entropy as an indicator of cerebral perfusion in patients with increased intracranial pressure. Journal of Anaesthesiology Clinical Pharmacology, 30(3), 409. doi:10.4103/0970-9185.137280

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem