Mostrar el registro sencillo del ítem
dc.contributor.author | Luca Motoc, Dana | es_ES |
dc.contributor.author | Ferrándiz Bou, Santiago | es_ES |
dc.contributor.author | Balart Gimeno, Rafael Antonio | es_ES |
dc.date.accessioned | 2015-06-24T12:48:53Z | |
dc.date.available | 2015-06-24T12:48:53Z | |
dc.date.issued | 2015-05 | |
dc.identifier.issn | 0021-9983 | |
dc.identifier.uri | http://hdl.handle.net/10251/52220 | |
dc.description.abstract | Multi-layered glass and carbon-reinforced polymer composites may exhibit unique properties comparatively with the benchmark, proven they are being tailored bounded by several requirements. The paper herein approaches issues on the influence of the various contents and orientation of UD carbon fibre constitutive on the mechanical, dynamical and thermal expansion if embedded along with glass fibres in different stacking sequencing within an unsaturated polymer resin. The results show that the architectures with the highest content of carbon fibres (e.g. GF:CF(60:40) 0 and 90 ) provide the best tensile and flexural properties, and behave better under dynamical loading conditions and temperature variations, no matter the orientation directions. In addition, it was shown that a thorough understanding can be attained, with respect to the UD carbon fibre content, and different orientations influence on the overall composite material properties, taking into account the data retrieved from dynamical and thermal expansion runs. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications (UK and US) | es_ES |
dc.relation.ispartof | Journal of Composite Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Mechanical | es_ES |
dc.subject | Dynamic mechanical | es_ES |
dc.subject | Thermal expansion | es_ES |
dc.subject | Orientation | es_ES |
dc.subject | Carbon fibre | es_ES |
dc.subject | Glass fibre | es_ES |
dc.subject | Polymer | es_ES |
dc.subject | Composite | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Effects of fibre orientation and content on the mechanical, dynamic mechanical and thermal expansion properties of multi-layered glass/carbon fibre-reinforced polymer composites | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/0021998314532151 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Luca Motoc, D.; Ferrándiz Bou, S.; Balart Gimeno, RA. (2015). Effects of fibre orientation and content on the mechanical, dynamic mechanical and thermal expansion properties of multi-layered glass/carbon fibre-reinforced polymer composites. Journal of Composite Materials. 49(10):1211-1221. doi:10.1177/0021998314532151 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1177/0021998314532151 | es_ES |
dc.description.upvformatpinicio | 1211 | es_ES |
dc.description.upvformatpfin | 1221 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 49 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.senia | 268108 | |
dc.identifier.eissn | 1530-793X | |
dc.description.references | Bunsell, A. R., & Harris, B. (1974). Hybrid carbon and glass fibre composites. Composites, 5(4), 157-164. doi:10.1016/0010-4361(74)90107-4 | es_ES |
dc.description.references | Summerscales, J., & Short, D. (1978). Carbon fibre and glass fibre hybrid reinforced plastics. Composites, 9(3), 157-166. doi:10.1016/0010-4361(78)90341-5 | es_ES |
dc.description.references | Kretsis, G. (1987). A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites, 18(1), 13-23. doi:10.1016/0010-4361(87)90003-6 | es_ES |
dc.description.references | Fu, S.-Y., Lauke, B., Mäder, E., Yue, C.-Y., & Hu, X. (2000). Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 31(10), 1117-1125. doi:10.1016/s1359-835x(00)00068-3 | es_ES |
dc.description.references | Stevanović, M., & Sekulić, D. P. (2003). Macromechanical Characteristics Deduced from Three-Point Flexure Tests on Unidirectional Carbon/Epoxy Composites. Mechanics of Composite Materials, 39(5), 387-392. doi:10.1023/b:mocm.0000003288.75552.cb | es_ES |
dc.description.references | Tsukamoto, H. (2011). A mean-field micromechanical approach to design of multiphase composite laminates. Materials Science and Engineering: A, 528(7-8), 3232-3242. doi:10.1016/j.msea.2010.12.102 | es_ES |
dc.description.references | Grozdanov, A., & Bogoeva-Gaceva, G. (2010). Carbon Fibers/Polyamide 6 Composites Based on Hybrid Yarns. Journal of Thermoplastic Composite Materials, 23(1), 99-110. doi:10.1177/0892705708095994 | es_ES |
dc.description.references | Valenza, A., Fiore, V., & Di Bella, G. (2009). Effect of UD Carbon on the Specific Mechanical Properties of Glass Mat Composites for Marine Applications. Journal of Composite Materials, 44(11), 1351-1364. doi:10.1177/0021998309353215 | es_ES |
dc.description.references | Mujika, F. (2006). On the difference between flexural moduli obtained by three-point and four-point bending tests. Polymer Testing, 25(2), 214-220. doi:10.1016/j.polymertesting.2005.10.006 | es_ES |
dc.description.references | Shenghu Cao, Zhis WU, & Xin Wang. (2009). Tensile Properties of CFRP and Hybrid FRP Composites at Elevated Temperatures. Journal of Composite Materials, 43(4), 315-330. doi:10.1177/0021998308099224 | es_ES |
dc.description.references | DUBOULOZMONNET, F., MELE, P., & ALBEROLA, N. (2005). Glass fibre aggregates: consequences on the dynamic mechanical properties of polypropylene matrix composites. Composites Science and Technology, 65(3-4), 437-443. doi:10.1016/j.compscitech.2004.09.012 | es_ES |
dc.description.references | Kishi, H., Kuwata, M., Matsuda, S., Asami, T., & Murakami, A. (2004). Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Composites Science and Technology, 64(16), 2517-2523. doi:10.1016/j.compscitech.2004.05.006 | es_ES |
dc.description.references | Miyagawa, H., Mase, T., Sato, C., Drown, E., Drzal, L. T., & Ikegami, K. (2006). Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon, 44(10), 2002-2008. doi:10.1016/j.carbon.2006.01.026 | es_ES |
dc.description.references | TANIGUCHI, N., NISHIWAKI, T., HIRAYAMA, N., NISHIDA, H., & KAWADA, H. (2009). Dynamic tensile properties of carbon fiber composite based on thermoplastic epoxy resin loaded in matrix-dominant directions. Composites Science and Technology, 69(2), 207-213. doi:10.1016/j.compscitech.2008.10.002 | es_ES |
dc.description.references | Bosze, E. J., Alawar, A., Bertschger, O., Tsai, Y.-I., & Nutt, S. R. (2006). High-temperature strength and storage modulus in unidirectional hybrid composites. Composites Science and Technology, 66(13), 1963-1969. doi:10.1016/j.compscitech.2006.01.020 | es_ES |
dc.description.references | Pothan, L. A., George, C. N., John, M. J., & Thomas, S. (2009). Dynamic Mechanical and Dielectric Behavior of Banana-Glass Hybrid Fiber Reinforced Polyester Composites. Journal of Reinforced Plastics and Composites, 29(8), 1131-1145. doi:10.1177/0731684409103075 | es_ES |
dc.description.references | Pothan, L. A., Potschke, P., Habler, R., & Thomas, S. (2005). The Static and Dynamic Mechanical Properties of Banana and Glass Fiber Woven Fabric-Reinforced Polyester Composite. Journal of Composite Materials, 39(11), 1007-1025. doi:10.1177/0021998305048737 | es_ES |
dc.description.references | Jakubinek, M. B., Whitman, C. A., & White, M. A. (2009). Negative thermal expansion materials. Journal of Thermal Analysis and Calorimetry, 99(1), 165-172. doi:10.1007/s10973-009-0458-9 | es_ES |
dc.description.references | Ito, T., Suganuma, T., & Wakashima, K. (1999). Journal of Materials Science Letters, 18(17), 1363-1365. doi:10.1023/a:1006694601493 | es_ES |
dc.description.references | Pardini, L. C., & Gregori, M. L. (2010). Modeling elastic and thermal properties of 2.5D carbon fiber C/SiC hybrid matrix composites by homogenization method. Journal of Aerospace Technology and Management, 2(2), 183-194. doi:10.5028/jatm.2010.02026510 | es_ES |
dc.description.references | Tsai, Y. I., Bosze, E. J., Barjasteh, E., & Nutt, S. R. (2009). Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites. Composites Science and Technology, 69(3-4), 432-437. doi:10.1016/j.compscitech.2008.11.012 | es_ES |
dc.description.references | Kia, H. G. (2008). Thermal Expansion of Sheet Molding Compound Materials. Journal of Composite Materials, 42(7), 681-695. doi:10.1177/0021998308088598 | es_ES |