Mostrar el registro sencillo del ítem
dc.contributor.author | Vendrell Vidal, Eduardo | es_ES |
dc.contributor.author | Sánchez Belenguer, Carlos | es_ES |
dc.date.accessioned | 2015-06-25T09:21:50Z | |
dc.date.available | 2015-06-25T09:21:50Z | |
dc.date.issued | 2014-04 | |
dc.identifier.issn | 1556-4711 | |
dc.identifier.uri | http://hdl.handle.net/10251/52271 | |
dc.description.abstract | This article addresses the problem of automatic reconstruction of ancient artifacts from archaeological fragments. The technique described here focuses on pairwise matching of flat fragments (typically fresco fragments), and it is intended to be the core of a larger system for artifact reconstruction. Global registration techniques are challenging due to the combinatory explosion that happens in the solution space: the goal is to find the best alignment among all possible ones without an initialization. This fact defines the duality between performance and correction that we face in this work. The proposed technique defines a cost function to evaluate the quality of an alignment based on a discrete sampling of the fragments that ensures data alignment. Starting from an exhaustive search strategy, the technique progressively incorporates new features that lead to a hierarchical search strategy. Convergence and correction of the resulting technique are ensured using an optimistic cost function. Internal search calculations are optimized so the only operations performed are additions, subtractions, and comparisons over aligned data. All heavy geometric operations are carried out by the GPU on a preprocessing stage that only happens once per fragment. | es_ES |
dc.description.sponsorship | This work is supported by the Programa de Ayudas de Investigacion y Desarrollo (PAID) of the Universitat Politecnica de Valencia and the "Plan Nacional de I+D+i 2008-2011" from the Ministerio de Economia y Competitividad of Spain, Project ID: HAR2012-38391-C02-02. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Association for Computing Machinery (ACM) | es_ES |
dc.relation.ispartof | Journal on Computing and Cultural Heritage | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | 3D | es_ES |
dc.subject | Automatic Reconstruction | es_ES |
dc.subject | Global registration | es_ES |
dc.subject | Archaeological fragments | es_ES |
dc.subject | Algorithms | es_ES |
dc.subject | Performance | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | A Discrete Approach for Pairwise Matching of Archaeological Fragments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1145/2597178 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//HAR2012-38391-C02-02/ES/DESARROLLO DE METODOLOGIAS DE RECOMPOSICION AUTOMATICA DE FRAGMENTOS BASADAS EN TECNICAS DE ADQUISICION, ANALISIS Y PROTOTIPADO 3D/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Vendrell Vidal, E.; Sánchez Belenguer, C. (2014). A Discrete Approach for Pairwise Matching of Archaeological Fragments. Journal on Computing and Cultural Heritage. 7(3):1-19. https://doi.org/10.1145/2597178 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1145/2597178 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 277451 | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.description.references | K. S. Arun, T. S. Huang, and S. D. Blostein. 1987. Least-squares fitting of two 3-D point sets. Pattern Analysis and Machine Intelligence, IEEE Transactions on PAMI-9, 5 (1987), 698--700. | es_ES |
dc.description.references | P. J. Besl and N. D. McKay. 1992. A method for registration of 3-D shapes. IEEE Transactions Pattern Analysis and Machince Intelligence 14, 2 (February 1992), 239--256. | es_ES |
dc.description.references | B. J. Brown. 2008. Registration and Matching of Large Geometric Datasets for Cultural Heritage Applications. Ph.D. Dissertation. Princeton University. | es_ES |
dc.description.references | B. J. Brown, C. Toler-Franklin, D. Nehab, M. Burns, D. Dobkin, A. Vlachopoulos, C. Doumas, S. Rusinkiewicz, and T. Weyrich. 2008. A system for high-volume acquisition and matching of fresco fragments: Reassembling Theran wall paintings. ACM Transactions on Graphics 27, 3, Article 84, 9 pages. | es_ES |
dc.description.references | A. G. Castañeda, B. J. Brown, S. Rusinkiewicz, T. Funkhouser, and T. Weyrich. 2011. Global consistency in the automatic assembly of fragmented artefacts. In Proceedings of the 12th International Conference on Virtual Reality, Archaeology and Cultural Heritage (VAST’11). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 73--80. | es_ES |
dc.description.references | Y. Chen and G. Medioni. 1992. Object modelling by registration of multiple range images. Image Vision Computing. 10, 3 (April 1992), 145--155. | es_ES |
dc.description.references | H. C. da Gama Leitão and J. Stolfi. 2002. A multiscale method for the reassembly of two-dimensional fragmented objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 9 (September 2002), 1239--1251. | es_ES |
dc.description.references | M. Fornasier and D. Toniolo. 2005. Fast, robust and efficient 2D pattern recognition for re-assembling fragmented images. Pattern Recognition 38, 11 (November 2005), 2074--2087. | es_ES |
dc.description.references | H. Freeman and L. Garder. 1964. Apictorial jigsaw puzzles: The computer solution of a problem in pattern recognition. IEEE Transactions on Electronic Computers EC-13, 2 (April 1964), 118--127. | es_ES |
dc.description.references | T. Funkhouser, H. Shin, C. Toler-Franklin, A. G. Castañeda, B. J. Brown, D. Dobkin, S. Rusinkiewicz, and T. Weyrich. 2011. Learning how to match fresco fragments. Journal of Computing and Cultural Heritage 4, 2 (Nov. 2011), 7:1--7:13 pages. | es_ES |
dc.description.references | R. Gal and D. Cohen-Or. 2006. Salient geometric features for partial shape matching and similarity. ACM Transactions on Graphics 25, 1 (January 2006), 130--150. | es_ES |
dc.description.references | N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. 2005. Robust global registration. In Proceedings of the 3rd Eurographics Symposium on Geometry Processing (SGP ’05). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, Article 197, 197--206 pages. | es_ES |
dc.description.references | D. Goldberg, C. Malon, and M. Bern. 2004. A global approach to automatic solution of jigsaw puzzles. Computational Geometry Theory and Applications 28, 2--3 (June 2004), 165--174. | es_ES |
dc.description.references | K. Hori, M. Imai, and T. Ogasawara. 1999. Joint detection for potsherds of broken earthenware. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2440--2445. | es_ES |
dc.description.references | Q. Huang, S. Flöry, N. Gelfand, M. Hofer, and H. Pottmann. 2006. Reassembling fractured objects by geometric matching. ACM Transactions on Graphics 25, 3 (2006), 569--578. | es_ES |
dc.description.references | A. Karasik and U. Smilansky. 2008. 3D scanning technology as a standard archaeological tool for pottery analysis: practice and theory. Journal of Archaeological Science 35, 5 (2008), 1148--1168. | es_ES |
dc.description.references | D. Koller and M. Levoy. 2006. Computer-aided Reconstruction and New Matches in the Forma Urbis Romae. Supplement, 103--125. | es_ES |
dc.description.references | W. Kong and B. B. Kimia. 2001. On solving 2D and 3D puzzles using curve matching. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 583--590. | es_ES |
dc.description.references | X. Li and I. Guskov. 2005. Multi-scale features for approximate alignment of point-based surfaces. In Proceedings of the 3rd Eurographics Symposium on Geometry Processing. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland. | es_ES |
dc.description.references | I. S. Okatani and A. Sugimoto. 2005. Globally convergent range image registration by graph kernel algorithm. In International Conference on 3D Digital Imaging and Modeling. 377--384. | es_ES |
dc.description.references | G. Papaioannou, E. Karabassi, and T. Theoharis. 2001. Virtual archaeologist: Assembling the past. IEEE Computer Graphics and Applications 21 (2001), 53--59. | es_ES |
dc.description.references | G. Papaioannou and E. A. Karabassi. 2003. On the automatic assemblage of arbitrary broken solid artefacts. Image and Vision Computing 21, 5 (2003), 401--412. | es_ES |
dc.description.references | C. Papaodysseus, T. Panagopoulos, M. Exarhos, C. Triantafillou, D. Fragoulis, and C. Doumas. 2002. Contour-shape based reconstruction of fragmented, 1600 BC wall paintings. IEEE Transactions on Signal Processing 50, 6 (June 2002), 1277--1288. | es_ES |
dc.description.references | S. Rusinkiewicz and M. Levoy. 2001. Efficient Variants of the ICP Algorithm. In 3rd International Conference on 3D Digital Imaging and Modeling (3DIM). | es_ES |
dc.description.references | M. S. Sagiroglu and A. Ercil. 2006. A texture based matching approach for automated assembly of puzzles. International Conference on Pattern Recognition 3 (2006), 1036--1041. | es_ES |
dc.description.references | Y. Shan, B. Matei, H. S. Sawhney, R. Kumar, D. Huber, and M. Hebert. 2004. Linear model hashing and batch RANSAC for rapid and accurate object recognition. In IEEE International Conference on Computer Vision and Pattern Recognition. 121--128. | es_ES |
dc.description.references | H. Shin, C. Doumas, T. Funkhouser, S. Rusinkiewicz, K. Steiglitz, A. Vlachopoulos, and T. Weyrich. 2010. Analyzing fracture patterns in Theran wall paintings. In Proceedings of the 11th International Conference on Virtual Reality, Archaeology and Cultural Heritage (VAST’10). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 71--78. | es_ES |
dc.description.references | C. Toler-Franklin, B. J. Brown, T. Weyrich, T. Funkhouser, and S. Rusinkiewicz. 2010. Multi-feature matching of fresco fragments. ACM Transactions on Graphics 29, 6, Article 185, 12 pages. | es_ES |
dc.description.references | O. van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or. 2010. A survey on shape correspondence. In Proceedings of the Eurographics State-of-the-Art Report. 1--24. | es_ES |
dc.description.references | A. R. Willis. 2004. Stochastic 3D Geometric Models for Classification, Deformation, and Estimation. Ph.D. Dissertation. Brown University, Providence, RI. Advisor(s) Cooper, David B. AAI3134376. | es_ES |
dc.description.references | A. R. Willis and D. B. Cooper. 2008. Computational reconstruction of ancient artifacts. IEEE Signal Processing Magazine 25, 4 (July 2008), 65--83. | es_ES |
dc.description.references | H. Wolfson, E. Schonberg, A. Kalvin, and Y. Lamdan. 1988. Solving jigsaw puzzles by computer. Annals of Operations Research 12, 1--4 (February 1988), 51--64. | es_ES |
dc.description.references | L. Zhu, Z. Zhou, and D. Hu. 2008. Globally consistent reconstruction of ripped-up documents. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 1 (January 2008), 1--13. | es_ES |
dc.description.references | G. Üçoluk and I. H. Toroslu. 1999. Automatic reconstruction of broken 3-D surface objects. Computers and Graphics 23, 4 (1999), 573--582. | es_ES |