- -

Modeling water resources and river-aquifer interaction in the Júcar River Basin, Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling water resources and river-aquifer interaction in the Júcar River Basin, Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-Martín, Miguel Ángel es_ES
dc.contributor.author Estrela Monreal, Teodoro es_ES
dc.contributor.author Andreu Álvarez, Joaquín es_ES
dc.contributor.author Ferrer Polo, Francisco Javier es_ES
dc.date.accessioned 2015-06-25T09:57:00Z
dc.date.available 2015-06-25T09:57:00Z
dc.date.issued 2014-09
dc.identifier.issn 0920-4741
dc.identifier.uri http://hdl.handle.net/10251/52278
dc.description “The final publication is available at Springer via http://dx.doi.org/10.1007/s11269-014-0755-3” es_ES
dc.description.abstract The paper presents how to solve some practical problems of water planning in a medium/large river basin, such as: the water resources assessment and its spatial-temporal variability over the long-short term, the impact of human activities on the water cycle, due to groundwater pumping and water returns into aquifers, the river-aquifer interactions and the aquifer depletion. It is based on the use of a new monthly conceptual distributed water balance model -PATRICAL- that includes the surface water (SW), groundwater (GW) behavior and the river-aquifer interaction. The model is applied to the Júcar River Basin District (RBD) in Spain (43,000 km2), with more than 250 aquifers, including catchments with humid climates (Júcar RBD northern), semiarid and arid catchments (southern). The model has a small number of parameters and obtains a satisfactory performance in SW and GW behavior. It has been calibrated/validated using monthly streamflows and two additional elements not generally used in models for large river basins, GW levels and river-aquifer interactions. In the hydrological time series of the Júcar RBD headers a statistical change point in the year 1979/80 is detected. It is due to changes in precipitation patterns and represents a 40% of reduction in streamflows in relation with the previous period. The impact of GW pumping in all aquifers is determined, the Mancha Oriental aquifer produces a significant reduction in streamflows of the Júcar river around 200-250 hm3/year. The GW level in the Villena-Benejama aquifer -Vinalopo Valley- has declined more than 200 m in last 30 years. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Water Resources Management es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Water balance model es_ES
dc.subject Large river basin es_ES
dc.subject Water resources assessment es_ES
dc.subject River-aquifer interaction es_ES
dc.subject Hydrological changes es_ES
dc.subject Aquifer depletion es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Modeling water resources and river-aquifer interaction in the Júcar River Basin, Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11269-014-0755-3
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Pérez-Martín, MÁ.; Estrela Monreal, T.; Andreu Álvarez, J.; Ferrer Polo, FJ. (2014). Modeling water resources and river-aquifer interaction in the Júcar River Basin, Spain. Water Resources Management. 28(12):4337-4358. https://doi.org/10.1007/s11269-014-0755-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11269-014-0755-3 es_ES
dc.description.upvformatpinicio 4337 es_ES
dc.description.upvformatpfin 4358 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 268568
dc.subject.asignatura Incidencia del cambio climático en sistemas de recursos hídricos 32473 / W - Programa de doctorado en ingeniería del agua y medioambiental 2077 es_ES
dc.subject.asignatura Incidencia del cambio climático en sistemas de recursos hídricos 32473 / W - Programa de doctorado en ingeniería del agua y medioambiental 2218 es_ES
dc.subject.asignatura Incidencia del cambio climático en sistemas de recursos hídricos 32473 / X - Máster universitario en ingeniería hidráulica y medio ambiente 2152 es_ES
dc.description.references Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56, Rome es_ES
dc.description.references Bladé I and Castro-Díez Y (2010) Atmospheric trends in the Iberian Peninsula during the instrumental period in the context of natural variability. In: Pérez FF and Boscolo R (Ed) Climate in Spain: past, present and future, 25–41 es_ES
dc.description.references Christensen S, Zlotnik VA, Tartakovsky DM (2009) Optimal design of pumping tests in leaky aquifers for stream depletion analysis. J Hydrol 375:554–565 es_ES
dc.description.references EC (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, L-327 Luxembourg es_ES
dc.description.references Edsel BD, Camp JV, LeBoeuf EJ, Penrod JR, Dobbins JP, Abkowitz MD (2011) Watershed modeling and its applications: a state-of-the-art review. Open Hydrol J 5:26–50 es_ES
dc.description.references Ehlschlaeger (1989) Using the A* Search Algorithm to Develop Hydrologic Models from Digital Elevation Data. Proceedings of International Geographic Information Systems (IGIS) Symposium '89, 275–281. Baltimore es_ES
dc.description.references Estrela T and Quintas L (1996) A distributed hydrological model for water resources assessment in large basins. Proceedings of 1st Intenational Conference on Rivertech 96. IWRA 2:861–868. Chicago es_ES
dc.description.references Estrela T, Cabezas F, Estrada F (1999) La evaluación de recursos hídricos en el Libro Blanco del Agua en España. Rev Ing Agua 6(2):125–138 es_ES
dc.description.references Estrela T, Pérez-Martín MA, Vargas E (2012) Impacts of climate change on water resources in Spain. Hydrol Sci J 57(6):1154–1167. doi: 10.1080/02626667.2012.702213 es_ES
dc.description.references Feng-Wen C, Chen-Wuing L (2012) Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ. doi: 10.1007/s10333-012-0319-1 es_ES
dc.description.references Ferrer J, Pérez-Martín MA, Jiménez S, Estrela T, Andreu J (2012) GIS based models for water quantity and quality assessment in the Júcar River Basin, Spain, including climate change effects. Science of the Total Environment. doi: 10.1016/j.scitotenv.2012.08.032 es_ES
dc.description.references Fleckenstein JH, Krause S, Hannah DM, Boano F (2010) Groundwater-surface water interactions: new methods and models to improve understanding of processes and dynamics. Adv Water Resour 33:1291–1295 es_ES
dc.description.references Font E, Pérez-Martín MA, Estrela T and Ferrer J (2004) Modelo hidrogeológico del acuífero de la Mancha Oriental para el análisis de los efectos de las diferentes alternativas de sustitución de extracciones por aguas superficiales. VIII Simposio de Hidrogeología. Zaragoza es_ES
dc.description.references García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta–Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth Sci Rev 105:121–139 es_ES
dc.description.references Huang F, Liu D, Tan X, Wang J, Chen Y, He B (2011) Explorations of the implementation of a parallel IDW interpolation algorithm in a Linux cluster – based parallel GIS. Comput Geosci 37:426–434 es_ES
dc.description.references Ivkovic KM (2009) A top–down approach to characterise aquifer–river interaction processes. J Hydrol 365:145–155 es_ES
dc.description.references Khaliqa MN, Ouardab TBMJ (2007) On the critical values of the standard normal homogeneity test (SNHT). Int J Climatol 27:681–687 es_ES
dc.description.references Martín-de-Luis M, Brunetti M, Gonzalez-Hidalgo JC, Longares LA, Martin-Vide J (2010) Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Glob Planet Chang 74:27–33 es_ES
dc.description.references Mays LW (2013) Groundwater resources sustainability: past, present, and future. Water Resour Manag 27:4409–4424. doi: 10.1007/s11269-013-0436-7 es_ES
dc.description.references McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference groundwater flow model. US Geological Survey Technical Manual of Water Resources Investigation, Book 6, US Geological Survey, Reston es_ES
dc.description.references Mejías M, Ballesteros BJ, Antón-Pacheco C, Domínguez JA, Garcia-Orellana J, Garcia-Solsona E, Masqué P (2012) Methodological study of submarine groundwater discharge from a karstic aquifer in the Western Mediterranean Sea. J Hydrol 464–465:27–40 es_ES
dc.description.references Milano M, Ruelland D, Fernandez S, Dezetter A, Fabre J, Servat E (2012) Facing climatic and anthropogenic changes in the Mediterranean basin: What will be the medium-term impact on water stress? Geoscience 344:432–440 es_ES
dc.description.references Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans Am Soc Agric Biol Eng 50(3):885–900. doi: 10.13031/2013.23153 es_ES
dc.description.references Murray SJ, Foster PN, Prentice IC (2012) Future global water resources with respect to climate change and water withdrawals as estimated by a dynamic global vegetation model. J Hydrol 448–449:14–29 es_ES
dc.description.references Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I: a discussion of principles. J Hydrol 10:282–290 es_ES
dc.description.references Paiva RCD, Buarque DC, Collischonn W, Bonnet MP, Frappart F, Calmant S, Mendes CAB (2013) Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resour Res 49:1226–1243. doi: 10.1002/wrcr.2006 es_ES
dc.description.references Pérez-Martín MA (2005) Modelo distribuido de simulación del ciclo hidrológico con calidad de aguas integrado en sistemas de información geográfica para grandes cuencas. Aportación al análisis de presiones e impactos de la Directiva Marco Europea del Agua. Ph.D. Thesis, Universitat Politécnica de Valencia, Spain es_ES
dc.description.references Pérez-Martín MA, Estrela T, del-Amo P (2012) Definition of Environmental Objectives in Relation with Nitrate Pollution in the Aquifers of Spain. Simulation Model and Scenarios used. International Congress on Environmental Modelling and Software (iEMSs2012), Leipzig es_ES
dc.description.references Pérez-Martín MA, Thurston W, Estrela T, del-Amo P (2013) Cambios en las series hidrológicas de los últimos 30 años y sus causas. El Efecto 80. In: Valles-Moran et al. (Ed) III Jornadas de Ingeniería del Agua. Barcelona, 1:527–534 es_ES
dc.description.references Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104 es_ES
dc.description.references Pokhrel P, Gupta HV, Wagener T (2008) A spatial regularization approach to parameter estimation for a distributed watershed model. Water Resour Res 44, W12419. doi: 10.1029/2007WR006615 es_ES
dc.description.references Reeves J, Chen J, Wang XL, Lund R, Lu Q (2007) A review and comparison of changepoint detection techniques for climate data. J Appl Meteorol Climatol 46 es_ES
dc.description.references Samaniego L, Kumar R, Attinger S (2010) Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale. Water Resour Res 46, W05523 es_ES
dc.description.references Sanz D, Castaño S, Cassiraga E, Sahuquillo A, Gómez-Alday JJ, Peña S, Calera A (2011) Modeling aquifer–river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain). Hydrogeol J 19:475–487 es_ES
dc.description.references Témez JR (1977) Modelo matemático de transformación precipitación-aportación. ASINEL es_ES
dc.description.references Theis CV (1940) The source of water derived from wells. Civ Eng ASCE 10:277–280 es_ES
dc.description.references Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94. doi: 10.2307/210739 es_ES
dc.description.references UNEP (1992) World atlas of desertification. Edward Arnold, London es_ES
dc.description.references Van Deursen WPA and Kwadijk JCJ (1993) Rhineflow: An integrated GIS water balance model for the river Rhine, HydroGIS 93: application of geographic information systems in hydrology and water resources, 507–518 es_ES
dc.description.references Wang QJ, Pagano TC, Zhou SL, Hapuarachchi HAP, Zhang L, Robertson DE (2011) Monthly versus daily water balance models in simulating monthly runoff. J Hydrol 404:166–175 es_ES
dc.description.references Werner AD, Zhang Q, Xue L, Smerdon BD, Li X, Zhu X, Yu L, Li L (2013) An initial inventory and indexation of groundwater mega-depletion cases. Water Resour Manag 27:507–533. doi: 10.1007/s11269-012-0199-6 es_ES
dc.description.references Zhang L, Potter N, Hickel K, Zhang Y, Shao Q (2008) Water balance modeling over variable time scales based on the Budyko framework – model development and testing. J Hydrol 360(1–4):117–131 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem