- -

The effect of sepiolite on the compatibilization of polyethylene thermoplastic starch blends for environmentally friendly films

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The effect of sepiolite on the compatibilization of polyethylene thermoplastic starch blends for environmentally friendly films

Show simple item record

Files in this item

dc.contributor.author Samper Madrigal, María Dolores es_ES
dc.contributor.author Fenollar Gimeno, Octavio Ángel es_ES
dc.contributor.author Dominici, F. es_ES
dc.contributor.author Balart Gimeno, Rafael Antonio es_ES
dc.contributor.author Kenny, J. M. es_ES
dc.date.accessioned 2015-06-25T12:13:36Z
dc.date.available 2015-06-25T12:13:36Z
dc.date.issued 2015-01
dc.identifier.issn 0022-2461
dc.identifier.uri http://hdl.handle.net/10251/52300
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s10853-014-8647-8 es_ES
dc.description.abstract [EN] Green polyethylene is a new and attracting polymer from biobased resources (sugarcane) and identical properties to petroleum-based polyethylene. Its potential in the packaging industry is really promising. In this work, we report the use of different compatibilizer systems for green polyethylene (from sugarcane) and thermoplastic starch (30 wt% TPS) in order to increase ductile mechanical properties and biodegradable content. Typical petroleum-based graft copolymer of polyethylene with maleic anhydride (PE-g-MA) is used as reference compatibilizer, and new compatibilizer systems are developed using sepiolite. The obtained results show that sepiolite-based compatibilizers provide good compatibilization properties as observed by a remarkable increase in elongation at break and a noticeable size reduction of the TPS domains dispersed in the green polyethylene matrix as observed by scanning electron microscopy (SEM). es_ES
dc.description.sponsorship This study has been funded by the ‘‘Conselleria d’Educacio´, Cultura i Esport’’—Generalitat Valenciana (Reference number: GV/2014/008). Authors thank Tolsa S.A for kindly supply sepiolite for this study and Microscopy Services at UPV for helping in using SEM and TEM techniques.
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation GV/GV/2014/008 es_ES
dc.relation.ispartof Journal of Materials Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Green polyethylene es_ES
dc.subject Thermoplastic starch es_ES
dc.subject Sepiolite es_ES
dc.subject Compatibilizers es_ES
dc.subject Electron Microscopy Service of the UPV
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title The effect of sepiolite on the compatibilization of polyethylene thermoplastic starch blends for environmentally friendly films es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10853-014-8647-8
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Samper Madrigal, MD.; Fenollar Gimeno, OÁ.; Dominici, F.; Balart Gimeno, RA.; Kenny, JM. (2015). The effect of sepiolite on the compatibilization of polyethylene thermoplastic starch blends for environmentally friendly films. Journal of Materials Science. 50(2):863-872. doi:10.1007/s10853-014-8647-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10853-014-8647-8 es_ES
dc.description.upvformatpinicio 863 es_ES
dc.description.upvformatpfin 872 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 50 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 278362
dc.identifier.eissn 1573-4803
dc.contributor.funder Generalitat Valenciana
dc.relation.references Alvarenga RAF, Dewulf J (2013) Plastic vs. fuel: Which use of the Brazilian ethanol Can bring more environmental gains? Renew Energ 59:49–52 es_ES
dc.relation.references Kikuchi Y, Hirao M, Narita K, Sugiyama E, Oliveira S, Chapman S, Arakaki MM, Cappra CM (2013) Environmental performance of biomass-derived chemical production: a case study on sugarcane-derived polyethylene. J Chem Eng Jpn 46:319–325 es_ES
dc.relation.references Liptow C, Tillman A-M (2012) A comparative Life Cycle Assessment Study of polyethylene based on sugarcane and crude oil. J Ind Ecol 16:420–435 es_ES
dc.relation.references Taghizadeh A, Sarazin P, Favis BD (2013) High molecular weight plasticizers in thermoplastic starch/polyethylene blends. J Mater Sci 48:1799–1811. doi: 10.1007/s10853-012-6943-8 es_ES
dc.relation.references Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids—Part I—Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38:909–915. doi: 10.1023/A:1022308705231 es_ES
dc.relation.references Pimentel TAPF, Duraes JA, Drummond AL, Schlemmer D, Falcao R, Araujo Sales MJ (2007) Preparation and characterization of blends of recycled polystyrene with cassava starch. J Mater Sci 42:7530–7536. doi: 10.1007/s10853-007-1622-x es_ES
dc.relation.references Rosa DS, Guedes CGF, Carvalho CL (2007) Processing and thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends. J Mater Sci 42:551–557. doi: 10.1007/s10853-006-1049-9 es_ES
dc.relation.references Kaseem M, Hamad K, Deri F (2012) Thermoplastic starch blends: a review of recent works. Polym Sci Ser A 54:165–176 es_ES
dc.relation.references Nafchi AM, Moradpour M, Saeidi M, Alias AK (2013) Thermoplastic starches: properties, challenges, and prospects. Starch-Starke 65:61–72 es_ES
dc.relation.references Jimenez A, Jose Fabra M, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Tech 5:2058–2076 es_ES
dc.relation.references Bikiaris D, Panayiotou C (1998) LDPE/starch blends compatibilized with PE-g-MA copolymers. J Appl Polym Sci 70:1503–1521 es_ES
dc.relation.references Liu W, Wang YJ, Sun Z (2003) Effects of polyethylene-grafted maleic anhydride (PE-g-MA) on thermal properties, morphology, and tensile properties of low-density polyethylene (LDPE) and corn starch blends. J Appl Polym Sci 88:2904–2911 es_ES
dc.relation.references Pedroso AG, Rosa DS (2005) Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends. Carbohyd Polym 59:1–9 es_ES
dc.relation.references Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2003) High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene. Polymer 44:1517–1526 es_ES
dc.relation.references Yang L, Liu W (2010) Effects of functional groups of starch on asa emulsification and sizing. In: Sun RC, Fu SY (eds) Research progress in paper industry and biorefinery. China University of Technology Press, Guangzhou, pp 1936–1939 es_ES
dc.relation.references Kapusniak J, Jochym K, Bajer K, Bajer D (2011) Review of methods for chemical modification of starch. Przem Chem 90:1521–1526 es_ES
dc.relation.references Ren L, Jiang M, Tong J, Bai X, Dong X, Zhou J (2010) Influence of surface esterification with alkenyl succinic anhydrides on mechanical properties of corn starch films. Carbohyd Polym 82:1010–1013 es_ES
dc.relation.references Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 17:1045–1065 es_ES
dc.relation.references Bhattacharya M (1998) Stress relaxation of starch synthetic polymer blends. J Mater Sci 33:4131–4139. doi: 10.1023/A:1004449002240 es_ES
dc.relation.references Sam ST, Ismail H, Ahmad Z (2011) Soil burial of polyethylene-g-(maleic anhydride) compatibilised LLDPE/soya powder blends. Polym-Plast Technol 50:851–861 es_ES
dc.relation.references Majid RA, Ismail H, Taib RM (2009) Effects of PE-g-MA on tensile properties, morphology and water absorption of LDPE/thermoplastic sago starch blends. Polym-Plast Technol 48:919–924 es_ES
dc.relation.references Kahar M, Wahab A, Ismail H, Othman N (2012) Compatibilization effects of PE-g-MA on mechanical, thermal and swelling properties of high density polyethylene/natural rubber/thermoplastic tapioca starch blends. Polym-Plast Technol 51:298–303 es_ES
dc.relation.references Xu Y, Thurber CM, Lodge TP, Hillmyer MA (2012) Synthesis and remarkable efficacy of model polyethylene-graft-poly(methyl methacrylate) copolymers as compatibilizers in polyethylene/poly(methyl methacrylate) blends. Macromolecules 45:9604–9610 es_ES
dc.relation.references Wang N, Yu J, Ma X, Wu Y (2007) The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohyd Polym 67:446–453 es_ES
dc.relation.references Kim JP, Yoon TH, Mun SP, Rhee JM, Lee JS (2006) Wood-polyethylene composites using ethylene-vinyl alcohol copolymer as adhesion promoter. Bioresource Technol 97:494–499 es_ES
dc.relation.references Choudhury A, Mukherjee M, Adhikari B (2006) Recycling of polyethylene/nylon 6 based waste oil pouches using compatibilizer. Indian J Chem Techn 13:233–241 es_ES
dc.relation.references Galan E (1996) Properties and applications of palygorskite-sepiolite clays. Clay Miner 31:443–453 es_ES
dc.relation.references Wan C, Chen B (2011) Synthesis and characterization of biomimetic hydroxyapatite/sepiolite nanocomposites. Nanoscale 3:693–700 es_ES
dc.relation.references Sarifuddin N, Ismail H, Ahmad Z (2014) Influence of halloysite nanotubes hybridized with kenaf core fibers on the physical and mechanical properties of low density polyethylene/thermoplastic sago starch blends. Polym-Plast Technol 53:107–115 es_ES
dc.relation.references Scaffaro R, Botta L, Mistretta MC, La Mantia FP (2013) Processing—morphology—property relationships of polyamide 6/polyethylene blend-clay nanocomposites. Express Polym Lett 7:873–884 es_ES
dc.relation.references Sarifuddin N, Ismail H (2013) Comparative study on the effect of bentonite or feldspar filled low-density polyethylene/thermoplastic sago starch/kenaf core fiber composites. Bioresources 8:4238–4257 es_ES
dc.relation.references Nunez K, Rosales C, Perera R, Villarreal N, Pastor JM (2012) Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polym Eng Sci 52:988–1004 es_ES
dc.relation.references Sangerano M, Pallaro E, Roppolo I, Rizza G (2009) UV-cured epoxy coating reinforced with sepiolite as inorganic filler. J Mater Sci 44:3165–3171. doi: 10.1007/s10853-009-3421-z es_ES
dc.relation.references Shafiq M, Yasin T, Saeed S (2012) Synthesis and characterization of linear low-density polyethylene/sepiolite nanocomposites. J Appl Polym Sci 123:1718–1723 es_ES
dc.relation.references Mir S, Yasin T, Halley PJ, Siddiqi HM, Ozdemir O, Anh N (2013) Thermal and rheological effects of sepiolite in linear low-density polyethylene/starch blend. J Appl Polym Sci 127:1330–1337 es_ES
dc.relation.references Kanmani P, Rhim J-W (2014) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloid 35:644–652 es_ES
dc.relation.references Olmo N, Lizarbe MA, Gavilanes JG (1987) Biocompatibility and degradability of sepiolite collagen complex. Biomaterials 8:67–69 es_ES
dc.relation.references Mortazavi S, Ghasemi I, Oromiehie A (2013) Effect of phase inversion on the physical and mechanical properties of low density polyethylene/thermoplastic starch. Polym Test 32:482–491 es_ES
dc.relation.references Pang M-M, Pun M-Y, Ishak ZAM (2013) Degradation studies during water absorption, aerobic biodegradation, and soil burial of biobased thermoplastic starch from agricultural waste/polypropylene blends. J Appl Polym Sci 129:3656–3664 es_ES


This item appears in the following Collection(s)

Show simple item record