Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández Hormazábal, Jorge Esteban | es_ES |
dc.contributor.author | Mula, Josefa | es_ES |
dc.contributor.author | Poler Escoto, Raúl | es_ES |
dc.contributor.author | Lyons, Andrew C. | es_ES |
dc.date.accessioned | 2015-06-26T09:06:17Z | |
dc.date.available | 2015-06-26T09:06:17Z | |
dc.date.issued | 2014-03 | |
dc.identifier.issn | 0926-2644 | |
dc.identifier.uri | http://hdl.handle.net/10251/52333 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/s10726-013-9358-2. | es_ES |
dc.description.abstract | [EN] Effective business process collaboration between companies operating in a supply chain can bring about important benefits, but several barriers need to be overcome. One important obstacle evidenced by professionals is related to the information and communication technologies used to support such collaboration. Although a supplier and a manufacturer may be willing to establish a closer relationship, a lack of easy-to-operate enterprise applications can thwart their collaborative ambitions. Specific technologies are required for each type of collaborative business process as generic applications do not lend themselves to addressing complex situations. Complexity lies in the need to consider common standards for information and decision exchanges, and for designing and implementing the right information and decision flow among supply chain members to support collaborative processes. This paper focuses on collaboration of demand, production and replenishment planning along a supply chain, and proposes a multi-tier, negotiation-based mechanism supported by a multi-agent system. The research hypothesis is that improvements in the service and profit level of supply chain members, and in the entire supply chain, can be achieved by implementing this form of collaboration. The proposed collaborative planning model was used to address a real automotive supply chain configuration for the purpose of testing its appropriateness and validating its performance. | es_ES |
dc.description.sponsorship | This work has been supported by the REMPLANET project (Ref. NMP2-SL-2009-229333) funded by the European Commission under the Seventh Framework Program—EU FP7 Project 229333. | |
dc.language | Inglés | es_ES |
dc.publisher | INFORMS (Institute for Operations Research and Management Sciences) | es_ES |
dc.relation.ispartof | Group Decision and Negotiation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Collaborative planning | es_ES |
dc.subject | Multi-level supply chain decision making | es_ES |
dc.subject | Negotiation | es_ES |
dc.subject | Multi-agent systems | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Collaborative planning in multi-tier supply chains supported by a negotiation-based mechanism and multi-agent system | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10726-013-9358-2 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/229333/EU/Resilient Multi-Plant Networks/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Investigación de Gestión e Ingeniería de la Producción - Centre d'Investigació de Gestió i Enginyeria de la Producció | es_ES |
dc.description.bibliographicCitation | Hernández Hormazábal, JE.; Mula, J.; Poler Escoto, R.; Lyons, AC. (2014). Collaborative planning in multi-tier supply chains supported by a negotiation-based mechanism and multi-agent system. Group Decision and Negotiation. 23(2):235-269. https://doi.org/10.1007/s10726-013-9358-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10726-013-9358-2 | es_ES |
dc.description.upvformatpinicio | 235 | es_ES |
dc.description.upvformatpfin | 269 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 265588 | |
dc.contributor.funder | European Commission | |
dc.description.references | Akçcal E, Çetinkaya S (2011) Quantitative models for inventory and production planning in closed-loop supply chains. Int J Prod Res 49(8):2373–2407 | es_ES |
dc.description.references | Adla A, Zarate P, Soubie J-L (2011) A proposal of toolkit for GDSS facilitators. Group Decis Negotiat J 20(1):57–77 | es_ES |
dc.description.references | Aknine S (2012) A multi-agent model for overlapping negotiations. Group Decis Negotiati J 21(6): 747–790 | es_ES |
dc.description.references | Azevedo AL, Toscano C, Sousa JP, Soares AL (2004) An advanced agent-based order planning system for dynamic networked enterprises. Prod Plan Control 15(2):133–144 | es_ES |
dc.description.references | Brandolese A, Brun A, Portioli-Staudacher A (2000) A multi-agent approach for the capacity allocation problem. Int J Prod Econ 66(3):269–285 | es_ES |
dc.description.references | Brintrup A (2010) Behaviour adaptation in the multi-agent. multi-objective and multi-role supply chain. Comput Ind 61(7):636–645 | es_ES |
dc.description.references | Cao M, Zhang Q (2010) Supply chain collaborative advantage: a firm’s perspective. Int J Prod Econ 128: 358–367 | es_ES |
dc.description.references | Cao M, Zhang Q (2011) Supply chain collaboration: impact on collaborative advantage and firm performance. J Oper Manag 29(3):163–180 | es_ES |
dc.description.references | Caridi M, Cigolini R, De Marco D (2005) Improving supply-chain collaboration by linking intelligent agents to CPFR. Int J Prod Res 43(20):4191–4218 | es_ES |
dc.description.references | Cavalieri S, Cesarotti V, Introna V (2003) A multiagent model for coordinated distribution chain planning. J Organ Comput Electron Commer 13(3–4):267–287 | es_ES |
dc.description.references | Chan FTS, Chan HK (2005) A new model for manufacturing supply chain networks: a multiagent approach. Proc Inst Mech Eng Part B J Eng Manuf 218(4):443–454 | es_ES |
dc.description.references | Chang J, Choi B, Lee H (2004) An organizational memory for facilitating knowledge: an application to e-business architecture. Expert Syst Appl 26:203–215 | es_ES |
dc.description.references | Chen Y, Peng Y, Finin T, Labrou Y, Cost S (1999) A negotiation-based Multi-agent systems for supply chain management. http://www.research.ibm.com/CoopDS/Agents99/chen.pdf (accesed on 29/06/2012) | es_ES |
dc.description.references | Chen Z, Pooley R (2007) Rediscovering zachman framework using ontology from a requirement engineering perspective. In: 33rd annual IEEE international computer software and applications conference, pp 3–8 | es_ES |
dc.description.references | Chen D, Doumeingts G, Vernadat F (2008) Architectures for enterprise integration and interoperability: past, present and future. Comput Ind 59:647–659 | es_ES |
dc.description.references | Coen M (1994) SodaBot: a software agent environment and construction system. Master’s thesis. MIT, Cambridge MA, 1994 | es_ES |
dc.description.references | D’Amours S, Frayret JM, Rousseau A, Harvey S, Plamondon P, Forget P (2006) Agent-based supply chain planning in the forest products industry. In: Shen W (ed) IFIP international federation for information processing, Information technology for balanced manufacturing systems, vol 220. Springer, Boston, pp 17–26 | es_ES |
dc.description.references | Dastani M, Dignum V, Dignum F (2003) Role-assignment in open agent societies. In: Proceedings of the second international joint conference on autonomous agents and multiagent systems (Melbourne. Australia. 14–18 July 2003). AAMAS ’03. ACM Press, New York, NY pp 489–496 | es_ES |
dc.description.references | De la Fuente VM, Ros L, Ortiz A (2010) Enterprise modelling methodology for forward and reverse supply chain flows integration. Comput Ind 61:702–710 | es_ES |
dc.description.references | Devaraj S, Krajewski L, Wei JC (2007) Impact of ebusiness technologies on operational performance: the role of production information integration in the supply chain. J Oper Manag 25:1199–1216 | es_ES |
dc.description.references | Dudek G, Stadtler H (2005) Negotiation-based collaborative planning between supply chains partners. Eur J Oper Res 163:668–687 | es_ES |
dc.description.references | Fatima SS, Wooldridge M, Jennings NR (2002) Optimal negotiation strategies for agents with incomplete information. In: Revised Papers from the 8th international workshop on intelligent agents VIII. Springer, Berlin, pp 377–392 | es_ES |
dc.description.references | FIPA (2012) The Foundation for Intelligent Physical Agents (FIPA). Available on http://www.fipa.org/ (accessed on 29/06/2012) | es_ES |
dc.description.references | Forget P, D’Amours S, Frayret J (2008) Multi-behavior agent model for planning in supply chains: an application to the lumber industry. Robotics Comput Integr Manuf 24:664–679 | es_ES |
dc.description.references | Forget P, D’Amours S, Frayret JM, Gaudreault J (2009) Study of the performance of multi-behaviour agents for supply chain planning. Comput Ind 60:698–708 | es_ES |
dc.description.references | Goel AK, Gupta SL, Srinivasan S, Jha BK (2011) Integration of supply chain management using multiagent system and negotiation model. Int J Comput Electr Eng 3(3):375–378 | es_ES |
dc.description.references | Hadeli Valckenaers P, Kollingbaum M, Van Brussel H (2004) Multi-agent coordination and control using stigmergy. Comput Ind 53(1):75–96 | es_ES |
dc.description.references | Hernandez JE, Mula J, Ferriols FJ, Poler R (2008) A conceptual model for the production and transport planning process: an application to the automobile sector. Comput Ind 59:842–852 | es_ES |
dc.description.references | Hernández JE, Alemany MME, Lario FC, Poler R (2009) SCAMM-CPA: a supply chain agent-based modelling methodology that supports a collaborative planning process. Innovar 19(34):99–120 | es_ES |
dc.description.references | Hernández JE, Poler R, Mula J, Lario FC (2011) The reverse logistic process of an automobile supply chain network supported by a collaborative decision making model. Group Decis Negotiat J 20(1):79–114 | es_ES |
dc.description.references | Holweg M, Disney S, Holmström J, Småros J (2005) Supply chain collaboration: making sense of the strategy continuum. Eur Manag J 23(2):170–181 | es_ES |
dc.description.references | JADE (2012) Java Agent DEvelopment Framework. http://jade.tilab.com (accessed on 29/06/2012) | es_ES |
dc.description.references | JAVA (2012) The Java programming language. http://www.java.com/en (accessed on 29/06/2012) | es_ES |
dc.description.references | Jayaram J, Tan K (2010) Supply chain integration with third-party logistics providers. Int J Prod Econ 125:262–271 | es_ES |
dc.description.references | Jennings N, Sycara K, Wooldridge M (1998) A roadmap for agent research and development. Auton Agent Multi Agent Syst 1(1):7–38 | es_ES |
dc.description.references | Jennings NR, Faratin P, Lomuscio AR, Parsons S, Wooldridge MJ, Sierra C (2001) Automated negotiation: prospects, methods and challenges. Group Decis Negotiat J 10(2):199–215 | es_ES |
dc.description.references | Julka N, Srinivasan R, Karimi I (2002) Agent-based supply chain management-1: framework. Comput Chem Eng 26(12):1755–1769 | es_ES |
dc.description.references | Jung HS, Jeong B (2005) Decentralised production-distribution planning system using collaborative agents in supply chain network. Int J Adv Manuf Technol 25(1–2):167–173 | es_ES |
dc.description.references | Jung H, Frank Chen F (2008) Decentralized supply chain planning framework for third party logistics partnership. Comput Ind Eng 55:348–364 | es_ES |
dc.description.references | Kaihara T, Fujii S, Iwata K (2006) Virtual enterprise coalition strategy with game theoretic multi-agent paradigm. CIRP Ann Manuf Technol 55:513–516 | es_ES |
dc.description.references | Karageorgos A, Mehandjiev N, Weichhart G, Hammerle A (2003) Agent-based optimisation of logistics and production planning. Eng Appl Artif Intell 16(4):335–348 | es_ES |
dc.description.references | Kilpeläinen T, Nurminen M (2007) Applying genre-based ontologies to enterprise architecture. In: 18th Australasian conference on information systems applying ontologies to EA. Toowoomba Kilpeläinen, pp 468–477 | es_ES |
dc.description.references | Koeszegi ST, Pesendorfer E, Vetschera R (2011) Data-driven phase analysis of e-negotiations: an exemplary study of synchronous and asynchronous negotiations. Group Decis Negotiat J 20(4):385–410 | es_ES |
dc.description.references | Kumar K (2001) Technology for supporting supply chain management: introduction. Commun ACM 44(6):58–61 | es_ES |
dc.description.references | Kwon O, Paul G, Lee K (2007) MACE-SCM: a multi-agent and case-based reasoning collaboration mechanism for supply chain management under supply and demand uncertainties. Expert Syst Appl 33:690–705 | es_ES |
dc.description.references | Lai G, Li C, Sycara K (2006) Efficient multi-attribute negotiation with incomplete information. Group Decis Negotiat J 15:511–528 | es_ES |
dc.description.references | Lejeune M, Yakova N (2005) On characterizing the 4 C’s in supply chain management. J Oper Manag 23:81–100 | es_ES |
dc.description.references | Li G, Yang H, Sun L, Sohal A (2009) The impact of IT implementation on supply chain integration and performance. Int J Prod Econ 120:125–138 | es_ES |
dc.description.references | Lyons AC, Coronado AE, Michaelides Z (2006) The relationship between proximate supply and build- to-order capability. Ind Manag Data Syst 106(8):1095–1111 | es_ES |
dc.description.references | Lyons AC, Coronado-Mondragon AE, Piller F, Poler R (2012) Customer-driven supply chains: from glass Pipelines to open innovation networks. Springer. doi: 10.1007/978-1-84628-876-0 | es_ES |
dc.description.references | Manthou V, Vlachopoulou M, Folinas D (2004) Virtual e-Chain (VeC) model for supply chain collaboration. Int J Prod Econ 87:241–250 | es_ES |
dc.description.references | Marquez AC, Bianchi C, Gupta JND (2004) Operational and financial effectiveness of e-collaboration tools in supply chain integration. Eur J Oper Res 159:348–363 | es_ES |
dc.description.references | Mula J, Peidro D, Díaz-Madroñero M, Vicens E (2010a) Mathematical programming models for supply chain production and transport planning. Eur J Oper Res 204:377–390 | es_ES |
dc.description.references | Mula J, Peidro D, Poler R (2010b) The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. Int J Prod Econ 128:136–143 | es_ES |
dc.description.references | Nagarajan M, Sošić G (2008) Game-theoretic analysis of cooperation among supply chain agents: review and extensions. Eur J Oper Res 187:719–745 | es_ES |
dc.description.references | Nahm YE, Ishikawa H (2005) Ahybrid multi-agent system architecture for enterprise integration using computer networks. Robotics Comput Integr Manuf 21:217–234 | es_ES |
dc.description.references | Nishioka Y (2004) Collaborative agents for production planning and scheduling (CAPPS): a challenge to develop a new software system architecture for manufacturing management in Japan. Int J Prod Res 42(17):3355–3368 | es_ES |
dc.description.references | Oliveira AI, Camarinha-Matos LM, Pouly M (2010) Agreement negotiation support in virtual organisation creation—an illustrative case. Prod Plan Control 21(2):160–180 | es_ES |
dc.description.references | Ortiz A, Anaya V, Franco D (2005) Deriving enterprise engineering and integration frameworks from supply chain management practices. In: Bernus P, Fox M (eds) Knowledge sharing in the integrated enterprise-interoperability strategies for the enterprise architect. Springer, Boston, pp 279–288 | es_ES |
dc.description.references | Poler R, Hernández JE, Mula J, Lario FC (2008) Collaborative forecasting in networked manufacturing enterprises. J Manuf Technol Manag 19(4):514–528 | es_ES |
dc.description.references | Reaidy J, Massotte P, Diep D (2006) Comparison of negotiation protocols in dynamic agent-based manufacturing systems. Int J Prod Econ 99(1–2):117–130 | es_ES |
dc.description.references | Sadeh NM, Hildum DW, Kjenstad D, Tseng A (1999) MASCOT: an agent-based architecture for coordinated mixed-initiative supply chain planning and scheduling. In: Third international conference on autonomous agents (Agents ’99) Workshop on agent-based decision support for managing the internet-enabled supply chain. Seattle, WA | es_ES |
dc.description.references | Schneeweiss C, Zimmer K (2004) Hierarchical coordination mechanisms within the supply chain. Eur J Oper Res 153(3):687–703 | es_ES |
dc.description.references | Selim H, Araz C, Ozkarahan I (2008) Collaborative production-distribution planning in supply chain: a fuzzy goal programming approach. Transp Res Part E 44:396–419 | es_ES |
dc.description.references | Soosay CA, Hyland PW, Ferrer M (2008) Supply chain collaboration: capabilities for continuous innovation. Supply Chain Manag Int J 13(2):160–169 | es_ES |
dc.description.references | Stadtler H (2009) A framework for collaborative planning and state-of-the-art. Oper Res Spectr 31:5–30 | es_ES |
dc.description.references | Ulieru M, Norrie D, Kremer R, Shen W (2000) A multi-resolution collaborative architecture for web-centric global manufacturing. Inf Sci 127:3–21 | es_ES |
dc.description.references | Urbig D, Schroter K (2004) C-IPS approach to negotiating agents: specifying dynamic interdependencies between issue, partner, and step. In: AAMAS’04: proceedings of the third international joint conference on autonomous agents and multiagent systems. IEEE Computer Society, Washington, DC. USA, pp 1284–1285 | es_ES |
dc.description.references | Uçkun C, Karaesmen F, Savaş S (2008) Investment in improved inventory accuracy in a decentralized supply chain. Int J Prod Econ 113(2):546–566 | es_ES |
dc.description.references | van der Vaart T, van Donk DP (2008) A critical review of survey-based research in supply chain integration. Int J Prod Econ 111:42–55 | es_ES |
dc.description.references | Vics, CPFR Committee (2012) Collaborative Planning Forecasting and Replenishment (CPFR). Version 2.0 Online edition. Available at: http://www.cpfr.org (reviewed on 29/06/2012) | es_ES |
dc.description.references | Wang M, Liu J, Wang H, Cheung WK, Xie X (2008) On-demand e-supply chain integration: a multi-agent constraint-based approach. Expert Syst Appl 34:2683–2692 | es_ES |
dc.description.references | Yao Y, Evers PT, Dresner ME (2007) Supply chain integration in vendor-managed inventory. Decis Support Syst 43:663–674 | es_ES |
dc.description.references | Zachman JA (1997) Enterprise architecture: the issue of the century. Database Program Des 44–53. Available at: http://xpertaml.com/backup/ABS%20Development%20(Martin)/Methodologies/ZIFA/ZIFA06.pdf (Accessed on 02/05/2013) | es_ES |
dc.description.references | Zice S, Zhengping L, Runtao Q, Mansoor S (2001) Agent-based logistics coordination and collaboration. Technical Report SIMTech Technical Report (AT/01/011/LCI). Singapore Insitute of Manufacturing Technology | es_ES |
dc.description.references | Zhang X, Lesser V, Wagner T (2006) Integrative negotiation among agents situated in organizations. IEEE Trans Syst Man Cybern Part C 36:19–30 | es_ES |
dc.description.references | Zhang X, Lesser V (2012) Meta-level Coordination for Solving Distributed Negotiation Chains in Semi-cooperative Multi-agent Systems. Group Decis Negotiat J pp 1–33. doi: 10.1007/s10726-012-9287-5 | es_ES |