- -

Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery

Show full item record

González Estrada, OA.; Nadal Soriano, E.; Ródenas, J.; Kerfriden, P.; Bordas, S.; Fuenmayor Fernández, FJ. (2014). Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Computational Mechanics. 53(5):957-976. https://doi.org/10.1007/s00466-013-0942-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/52350

Files in this item

Item Metadata

Title: Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery
Author: González Estrada, Octavio Andrés Nadal Soriano, Enrique Ródenas, J.J. Kerfriden, P. Bordas, S.P.A. Fuenmayor Fernández, Francisco Javier
UPV Unit: Universitat Politècnica de València. Centro de Investigación en Tecnología de Vehículos - Centre d'Investigació en Tecnologia de Vehicles
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] Goal-oriented error estimates (GOEE) have become popular tools to quantify and control the local error in quantities of interest (QoI), which are often more pertinent than local errors in energy for design purposes ...[+]
Subjects: Goal-oriented , Error estimation , Recovery , Quantities of interest , Error control , Mesh adaptivity
Copyrigths: Reserva de todos los derechos
Source:
Computational Mechanics. (issn: 0178-7675 ) (eissn: 1432-0924 )
DOI: 10.1007/s00466-013-0942-8
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s00466-013-0942-8
Project ID:
info:eu-repo/grantAgreement/EC/FP7/289361/EU/Integrating Numerical Simulation and Geometric Design Technology/
EPSRC EP/G042705/1
...[+]
info:eu-repo/grantAgreement/EC/FP7/289361/EU/Integrating Numerical Simulation and Geometric Design Technology/
info:eu-repo/grantAgreement/EC/FP7/279578/EU/Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery/
info:eu-repo/grantAgreement/RCUK/EPSRC/EP/G042705/1/GB/
EPSRC EP/G042705/1
ERC/279578
MINECO/DPI2010-20542
MINECO/FPU/AP2008-01086
GV/PROMETEO/2012/023
[-]
Thanks:
This work was supported by the EPSRC Grant EP/G042705/1 "Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method". Stephane Bordas also thanks partial funding ...[+]
Type: Artículo

References

Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, Chichester

Babuška I, Rheinboldt WC (1978) A-posteriori error estimates for the finite element method. Int J Numer Methods Eng 12(10):1597–1615

Cottereau R, Díez P, Huerta A (2009) Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method. Comput Mech 44(4):533–547 [+]
Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, Chichester

Babuška I, Rheinboldt WC (1978) A-posteriori error estimates for the finite element method. Int J Numer Methods Eng 12(10):1597–1615

Cottereau R, Díez P, Huerta A (2009) Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method. Comput Mech 44(4):533–547

Larsson F, Hansbo P, Runesson K (2002) Strategies for computing goal-oriented a posteriori error measures in non-linear elasticity. Int J Numer Methods Eng 55(8):879–894

Díez P, Parés N, Huerta A (2003) Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates. Int J Numer Methods Eng 56(10):1465–1488

Verfürth R (1996) A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley, Chichester

Stein E, Ramm E, Rannacher R (2003) Error-controlled adaptive finite elements in solid mechanics. Wiley, Chichester

Díez P, Egozcue JJ, Huerta A (1998) A posteriori error estimation for standard finite element analysis. Comput Methods Appl Mech Eng 163(1–4):141–157

Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2):337–357

Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods Eng 33(7):1331–1364

Bordas SPA, Duflot M (2007) Derivative recovery and a posteriori error estimate for extended finite elements. Comput Methods Appl Mech Eng 196(35–36):3381–3399

Bordas SPA, Duflot M, Le P (2008) A simple error estimator for extended finite elements. Commun Numer Methods Eng 24(11):961–971

Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting. Int J Numer Methods Eng 76(4):545–571

Duflot M, Bordas SPA (2008) A posteriori error estimation for extended finite elements by an extended global recovery. Int J Numer Methods Eng 76:1123–1138

Prange C, Loehnert S, Wriggers P (2012) Error estimation for crack simulations using the XFEM. Int J Numer Methods Eng 91:1459–1474

Hild P, Lleras V, Renard Y (2010) A residual error estimator for the XFEM approximation of the elasticity problem. Comput Mech (submitted)

González-Estrada O, Natarajan S, Ródenas J, Nguyen-Xuan H, Bordas S (2012) Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity. Comput Mech 52(1):37–52

González-Estrada O, Ródenas J, Bordas S, Duflot M, Kerfriden P, Giner E (2012) On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods. Eng Comput 29(8):2–2

Díez P, Ródenas JJ, Zienkiewicz OC (2007) Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. Int J Numer Methods Eng 69(10):2075–2098

Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40):2607–2621

Oden JT, Prudhomme S (2001) Goal-oriented error estimation and adaptivity for the finite element method. Comput Math Appl 41(5–6):735–756

Ladevèze P (2006) Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems. Comptes Rendus Mécanique 334(7):399–407

Ladevèze P, Pelle JP (2005) Mastering calculations in linear and nonlinear mechanics. Mechanical engineering series. Springer, Berlin

Rüter M, Stein E (2006) Goal-oriented a posteriori error estimates in linear elastic fracture mechanics. Comput Methods Appl Mech Eng 195(4–6):251–278

Ladevèze P, Rougeot P, Blanchard P, Moreau JP (1999) Local error estimators for finite element linear analysis. Comput Methods Appl Mech Eng 176(1–4):231–246

de Almeida JPM, Pereira OJBA (2006) Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems. Comput Methods Appl Mech Eng 195(4–6):279–296

Cirak F, Ramm E (1998) A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem. Comput Methods Appl Mech Eng 156(1–4):351–362

Verfürth R (1999) A review of a posteriori error estimation techniques for elasticity problems. Comput Methods Appl Mech Eng 176:419–440

Zienkiewicz OC, Taylor R (2000) The finite element method: the basis, vol 1, 5th edn. Butterworth-Heinemann, Oxford

Ladevèze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3):485–509

Pled F, Chamoin L, Ladevèze P (2012) An enhanced method with local energy minimization for the robust a posteriori construction of equilibrated stress fields in finite element analyses. Comput Mech 49(3):357–378

Blacker T, Belytschko T (1994) Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3):517–536

González-Estrada OA, Nadal E, Ródenas JJ, Kerfriden P, Bordas SPA (2012) Error estimation in quantities of interest for XFEM using recovery techniques. In: Yang ZJ (ed)20th UK National Conference of the Association for Computational Mechanics in Engineering (ACME). The University of Manchester, Manchester, pp 333–336

Pannachet T, Sluys LJ, Askes H (2009) Error estimation and adaptivity for discontinuous failure. Int J Numer Methods Eng 78(5):528–563

Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6):705–727

Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New York

Giner E, Tur M, Fuenmayor FJ (2009) A domain integral for the calculation of generalized stress intensity factors in sliding complete contacts. Int J Solids Struct 46(3–4):938–951

Ródenas JJ (2005) Goal Oriented Adaptivity: Una introducción a través del problema elástico lineal. Technical Report, CIMNE, PI274, Barcelona, Spain

González-Estrada OA, Ródenas JJ, Nadal E, Bordas SPA, Kerfriden P (2011) Equilibrated patch recovery for accurate evaluation of upper error bounds in quantities of interest. Adaptive Modeling and Simulation. In: Aubry D, Díez P, Tie B, Parés N (eds) Proceedings of V ADMOS 2011. CIMNE, Paris

Verdugo F, Díez P, Casadei F (2011) Natural quantities of interest in linear elastodynamics for goal oriented error estimation and adaptivity. Adaptive Modeling and Simulation. In: Aubry D, Díez P, Tie B, Parés N (eds) Proceedings of V ADMOS 2011. CIMNE, Paris

Ródenas JJ, Giner E, Tarancón JE, González-Estrada OA (2006) A recovery error estimator for singular problems using singular+smooth field splitting. In: Topping BHV, Montero G, Montenegro R (eds) Fifth International Conference on Engineering Computational Technology. Civil-Comp Press, Stirling, Scotland

Nadal E, Ródenas JJ, Tarancón JE, Fuenmayor FJ (2011) On the advantages of the use of cartesan grid solvers in shape optimization problems. Adaptive Modeling and Simulation. In: Aubry D, Díez P, Tie B, Parés N (eds) Proceedings of V ADMOS 2011. CIMNE, Paris

Nadal E, Ródenas J, Albelda J, Tur M, Fuenmayor FJ (2013) Efficient Finite Element methodology based on Cartesian Grids. Application to structural shape optimization. Abstr Appl Anal 2013(Article ID 953786):1–19.

Moumnassi M, Belouettar S, Béchet E, Bordas SPA, Quoirin D, Potier-Ferry M (2011) Finite element analysis on implicitly defined domains: an accurate representation based on arbitrary parametric surfaces. Comput Methods Appl Mech Eng 200(5–8):774–796

Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Methods Eng 56(4):609–635

Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(28–30):3163–3177

Gordon WJ, Hall CA (1973) Construction of curvilinear co-ordinate systems and applications to mesh generation. Int J Numer Methods Eng 7(4):461–477

Sevilla R, Fernández-Méndez S (2008) NURBS-enhanced finite element method ( NEFEM ). Online 76(1):56–83

Béchet E, Moës N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78:931–954

Schweitzer M (2011) Stable enrichment and local preconditioning in the particle-partition of unity method. Numerische Mathematik 118(1):137–170

Menk A, Bordas S (2011) A robust preconditioning technique for the extended finite element method. Int J Numer Methods Eng 85(13):1609–1632

Hiriyur B, Tuminaro R, Waisman H, Boman E, Keyes D (2012) A quasi-algebraic multigrid approach to fracture problems based on extended finite elements. SIAM J Sci Comput 34(2):603–626

Gerstenberger A, Tuminaro R (2012) An algebraic multigrid approach to solve xfem based fracture problems. Int J Numer Methods Eng 94(3):248–272

Ladevèze P, Marin P, Pelle JP, Gastine JL (1992) Accuracy and optimal meshes in finite element computation for nearly incompressible materials. Comput Methods Appl Mech Eng 94(3):303–315

Coorevits P, Ladevèze P, Pelle JP (1995) An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity. Comput Methods Appl Mech Eng 121:91–120

Li LY, Bettess P (1995) Notes on mesh optimal criteria in adaptive finite element computations. Commun Numer Methods Eng 11(11):911–915

Fuenmayor FJ, Oliver JL (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element method. Int J Numer Methods Eng 39:4039–4061

Abel JF, Shephard MS (1979) An algorithm for multipoint constraints in finite element analysis. Int J Numer Methods Eng 14(3):464–467

Farhat C, Lacour C, Rixen D (1998) Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm. Int J Numer Methods Eng 43(6):997–1016

Bordas SPA, Moran B (2006) Enriched finite elements and level sets for damage tolerance assessment of complex structures. Eng Fract Mech 73(9):1176–1201

Bordas S, Conley J, Moran B, Gray J, Nichols E (2007) A simulation-based design paradigm for complex cast components. Eng Comput 23(1):25–37

Bordas SPA, Nguyen PV, Dunant C, Guidoum A, Nguyen-Dang H (2007) An extended finite element library. Int J Numer Methods Eng 71(6):703–732

Wyart E, Coulon D, Duflot M, Pardoen T, Remacle JF, Lani F (2007) A substructured FE-shell/XFE-3D method for crack analysis in thin-walled structures. Int J Numer Methods Eng 72(7):757–779

Wyart E, Duflot M, Coulon D, Martiny P, Pardoen T, Remacle JF, Lani F (2008) Substructuring FEXFE approaches applied to three-dimensional crack propagation. J Comput Appl Math 215(2):626–638

[-]

This item appears in the following Collection(s)

Show full item record