- -

Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects

Mostrar el registro completo del ítem

Navarro-Urrios, D.; Gomis-Bresco, J.; Capuj, NE.; Alzina, F.; Griol Barres, A.; Puerto Garcia, D.; Martínez Abietar, AJ.... (2014). Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects. Journal of Applied Physics. 116(9):93506-93510. https://doi.org/10.1063/1.4894623

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/52491

Ficheros en el ítem

Metadatos del ítem

Título: Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects
Autor: Navarro-Urrios, D. Gomis-Bresco, J. Capuj, N. E. Alzina, F. Griol Barres, Amadeu Puerto Garcia, Daniel Martínez Abietar, Alejandro José Sotomayor-Torres, C. M.
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Fecha difusión:
Resumen:
[EN] We report on the modification of the optical and mechanical properties of a silicon 1D optomechanical crystal cavity due to thermo-optic effects in a high phonon/photon population regime. The cavity heats up due to ...[+]
Palabras clave: Optomechanics , Photonic crystals
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Applied Physics. (issn: 0021-8979 )
DOI: 10.1063/1.4894623
Editorial:
American Institute of Physics (AIP)
Versión del editor: http://dx.doi.org/10.1063/1.4894623
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/233883/EU/TAILoring photon-phonon interaction in silicon PHOXonic crystals/
info:eu-repo/grantAgreement/MINECO//MAT2012-31392/ES/DISEÑO DE LAS RELACIONES DE DISPERSION DE FONONES ACUSTICOS/
info:eu-repo/grantAgreement/EC/FP7/321122/EU/Sound-Light Manipulation in the Terahertz/
Agradecimientos:
This work was supported by the EU through the project TAILPHOX (ICT-FP7-233883) and the ERC Advanced Grant SOULMAN (ERC-FP7-321122) and the Spanish projects TAPHOR (MAT2012-31392). The authors thank A. Tredicucci for a ...[+]
Tipo: Artículo

References

Kippenberg, T. J., & Vahala, K. J. (2008). Cavity Optomechanics: Back-Action at the Mesoscale. Science, 321(5893), 1172-1176. doi:10.1126/science.1156032

Chan, J., Alegre, T. P. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Gröblacher, S., … Painter, O. (2011). Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367), 89-92. doi:10.1038/nature10461

Teufel, J. D., Donner, T., Li, D., Harlow, J. W., Allman, M. S., Cicak, K., … Simmonds, R. W. (2011). Sideband cooling of micromechanical motion to the quantum ground state. Nature, 475(7356), 359-363. doi:10.1038/nature10261 [+]
Kippenberg, T. J., & Vahala, K. J. (2008). Cavity Optomechanics: Back-Action at the Mesoscale. Science, 321(5893), 1172-1176. doi:10.1126/science.1156032

Chan, J., Alegre, T. P. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Gröblacher, S., … Painter, O. (2011). Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367), 89-92. doi:10.1038/nature10461

Teufel, J. D., Donner, T., Li, D., Harlow, J. W., Allman, M. S., Cicak, K., … Simmonds, R. W. (2011). Sideband cooling of micromechanical motion to the quantum ground state. Nature, 475(7356), 359-363. doi:10.1038/nature10261

Barclay, P. E., Srinivasan, K., & Painter, O. (2005). Nonlinear response of silicon photonic crystal micresonators excited via an integrated waveguide and fiber taper. Optics Express, 13(3), 801. doi:10.1364/opex.13.000801

Ding, L., Senellart, P., Lemaitre, A., Ducci, S., Leo, G., & Favero, I. (2010). GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications. Nanophotonics III. doi:10.1117/12.853985

Eichenfield, M., Michael, C. P., Perahia, R., & Painter, O. (2007). Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nature Photonics, 1(7), 416-422. doi:10.1038/nphoton.2007.96

Carmon, T., Yang, L., & Vahala, K. J. (2004). Dynamical thermal behavior and thermal self-stability of microcavities. Optics Express, 12(20), 4742. doi:10.1364/opex.12.004742

Camacho, R. M., Chan, J., Eichenfield, M., & Painter, O. (2009). Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity. Optics Express, 17(18), 15726. doi:10.1364/oe.17.015726

Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J., & Painter, O. (2009). Optomechanical crystals. Nature, 462(7269), 78-82. doi:10.1038/nature08524

Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D., & Johnson, S. G. (2010). Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 181(3), 687-702. doi:10.1016/j.cpc.2009.11.008

Ding, L., Belacel, C., Ducci, S., Leo, G., & Favero, I. (2010). Ultralow loss single-mode silica tapers manufactured by a microheater. Applied Optics, 49(13), 2441. doi:10.1364/ao.49.002441

J. Chan , Ph.D. dissertation, California Institute of Technology, Los Angeles, 2014.

Priem, G., Dumon, P., Bogaerts, W., Van Thourhout, D., Morthier, G., & Baets, R. (2005). Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures. Optics Express, 13(23), 9623. doi:10.1364/opex.13.009623

Liu, Y., & Tsang, H. K. (2007). Time dependent density of free carriers generated by two photon absorption in silicon waveguides. Applied Physics Letters, 90(21), 211105. doi:10.1063/1.2741611

Johnson, J. A., Maznev, A. A., Cuffe, J., Eliason, J. K., Minnich, A. J., Kehoe, T., … Nelson, K. A. (2013). Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane. Physical Review Letters, 110(2). doi:10.1103/physrevlett.110.025901

Hopkins, P. E., Reinke, C. M., Su, M. F., Olsson, R. H., Shaner, E. A., Leseman, Z. C., … El-Kady, I. (2011). Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning. Nano Letters, 11(1), 107-112. doi:10.1021/nl102918q

Marconnet, A. M., Asheghi, M., & Goodson, K. E. (2013). From the Casimir Limit to Phononic Crystals: 20 Years of Phonon Transport Studies Using Silicon-on-Insulator Technology. Journal of Heat Transfer, 135(6). doi:10.1115/1.4023577

Jellison, G. E., & Burke, H. H. (1986). The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths. Journal of Applied Physics, 60(2), 841-843. doi:10.1063/1.337386

Xu, Q., & Lipson, M. (2006). Carrier-induced optical bistability in silicon ring resonators. Optics Letters, 31(3), 341. doi:10.1364/ol.31.000341

Vanhellemont, J., & Simoen, E. (2007). Brother Silicon, Sister Germanium. Journal of The Electrochemical Society, 154(7), H572. doi:10.1149/1.2732221

C. Bourgeois , E. Steinsland , N. Blanc , and N. F. de Rooij , in Proceedings of the 1997 IEEE International Frequency Control Symposium (1997), pp. 791–799.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem