- -

On the Exact Series Solution for Nonhomogeneous Strongly Coupled Mixed Parabolic Boundary Value Problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the Exact Series Solution for Nonhomogeneous Strongly Coupled Mixed Parabolic Boundary Value Problems

Mostrar el registro completo del ítem

Soler Basauri, V.; Defez Candel, E.; Capilla Lladró, R.; Verdoy González, JA. (2014). On the Exact Series Solution for Nonhomogeneous Strongly Coupled Mixed Parabolic Boundary Value Problems. Abstract and Applied Analysis. 2014:1-10. doi:10.1155/2014/826860

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/52528

Ficheros en el ítem

Metadatos del ítem

Título: On the Exact Series Solution for Nonhomogeneous Strongly Coupled Mixed Parabolic Boundary Value Problems
Autor: Soler Basauri, Vicente Defez Candel, Emilio Capilla Lladró, Roberto Verdoy González, José Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Fecha difusión:
Resumen:
This paper studies the construction of the exact solution for parabolic coupled systems of the type [u.sub.t] = A[u.sub.xx], [A.sub.1]u(0, t) + [B.sub.1][u.sub.x](0, t) = 0, [A.sub.2] u(l, t) + [B.sub.2][u.sub.x](l, t) = ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Abstract and Applied Analysis. (issn: 1085-3375 ) (eissn: 1687-0409 )
DOI: 10.1155/2014/826860
Editorial:
Hindawi Publishing Corporation
Versión del editor: http://dx.doi.org/10.1155/2014/826860
Tipo: Artículo

References

Melezhik, V. ., Puzynin, I. ., Puzynina, T. ., & Somov, L. . (1984). Numerical solution of a system of integrodifferential equations arising from the quantum mechanical three-body problem with coulomb interaction. Journal of Computational Physics, 54(2), 221-236. doi:10.1016/0021-9991(84)90115-3

Levine, R. D., Shapiro, M., & Johnson, B. R. (1970). Transition Probabilities in Molecular Collisions: Computational Studies of Rotational Excitation. The Journal of Chemical Physics, 52(4), 1755-1767. doi:10.1063/1.1673214

Lill, J. V., Schmalz, T. G., & Light, J. C. (1983). Imbedded matrix Green’s functions in atomic and molecular scattering theory. The Journal of Chemical Physics, 78(7), 4456-4463. doi:10.1063/1.445338 [+]
Melezhik, V. ., Puzynin, I. ., Puzynina, T. ., & Somov, L. . (1984). Numerical solution of a system of integrodifferential equations arising from the quantum mechanical three-body problem with coulomb interaction. Journal of Computational Physics, 54(2), 221-236. doi:10.1016/0021-9991(84)90115-3

Levine, R. D., Shapiro, M., & Johnson, B. R. (1970). Transition Probabilities in Molecular Collisions: Computational Studies of Rotational Excitation. The Journal of Chemical Physics, 52(4), 1755-1767. doi:10.1063/1.1673214

Lill, J. V., Schmalz, T. G., & Light, J. C. (1983). Imbedded matrix Green’s functions in atomic and molecular scattering theory. The Journal of Chemical Physics, 78(7), 4456-4463. doi:10.1063/1.445338

Mrugal/a, F., & Secrest, D. (1983). The generalized log‐derivative method for inelastic and reactive collisionsa). The Journal of Chemical Physics, 78(10), 5954-5961. doi:10.1063/1.444610

Soler, V., Defez, E., Ferrer, M. V., & Camacho, J. (2013). On Exact Series Solution of Strongly Coupled Mixed Parabolic Problems. Abstract and Applied Analysis, 2013, 1-9. doi:10.1155/2013/524514

Soler, V., Defez, E., & Verdoy, J. A. (2014). On Exact Series Solution for Strongly Coupled Mixed Parabolic Boundary Value Problems. Abstract and Applied Analysis, 2014, 1-9. doi:10.1155/2014/759427

Navarro, E., Jódar, L., & Ferrer, M. V. (2002). Constructing eigenfunctions of strongly coupled parabolic boundary value systems. Applied Mathematics Letters, 15(4), 429-434. doi:10.1016/s0893-9659(01)00154-9

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem