- -

A smart handover prediction system based on curve fitting model for Fast Mobile IPv6 in wireless networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A smart handover prediction system based on curve fitting model for Fast Mobile IPv6 in wireless networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sadiq, Ali Safa es_ES
dc.contributor.author Abu Bakar, Kamalrulnizam es_ES
dc.contributor.author Ghafoor, Kayhan Zrar es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Mirjalili, SeyedAli es_ES
dc.date.accessioned 2015-07-01T14:19:28Z
dc.date.available 2015-07-01T14:19:28Z
dc.date.issued 2014-07
dc.identifier.issn 1074-5351
dc.identifier.uri http://hdl.handle.net/10251/52578
dc.description.abstract Seamless handover process is essential in order to provide efficient communication between mobile nodes in wireless local area networks. Despite the importance of a signal strength prediction model to provide seamless handovers, it is not embedded in standard mobility management protocols. In this article, we propose a smart handover prediction system based on curve fitting model to perform the handover (CHP) algorithm. The received signal strength indicator parameter, from scanning phase, is considered as an input to the CHP in order to provide a prediction technique for a mobile node to estimate the received signal strength value for the access points in the neighborhood and to select the best candidate access point from them in an intelligent way. We implemented the proposed approach and compared it with standard protocols and linear regression-based handover prediction approach. Simulation results in complex wireless environments show that our CHP approach performs the best by predicting the received signal strength value with up to 800 ms in advance from real obtained value via scanning phase. Moreover, our CHP approach is the best in terms of layer 2 and overall handover latency, in comparison with standard protocols and linear regression approach, respectively. es_ES
dc.language Inglés es_ES
dc.publisher Wiley: 12 months es_ES
dc.relation.ispartof International Journal of Communication Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Curve fitting model es_ES
dc.subject Smart handover es_ES
dc.subject FMIPv6 es_ES
dc.subject Mobility management es_ES
dc.subject IEEE 802.11 es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title A smart handover prediction system based on curve fitting model for Fast Mobile IPv6 in wireless networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/dac.2386
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Sadiq, AS.; Abu Bakar, K.; Ghafoor, KZ.; Lloret, J.; Mirjalili, S. (2014). A smart handover prediction system based on curve fitting model for Fast Mobile IPv6 in wireless networks. International Journal of Communication Systems. 27(7):969-990. doi:10.1002/dac.2386 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/dac.2386 es_ES
dc.description.upvformatpinicio 969 es_ES
dc.description.upvformatpfin 990 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 287259
dc.description.references Mrugalski, T., & Wozniak, J. (2009). Analysis of IPv6 handovers in IEEE 802.16 environment. Telecommunication Systems, 45(2-3), 191-204. doi:10.1007/s11235-009-9244-z es_ES
dc.description.references Cabellos-Aparicio, A., Núñez-Martínez, J., Julian-Bertomeu, H., Jakab, L., Serral-Gracià, R., & Domingo-Pascual, J. (2005). Evaluation of the Fast Handover Implementation for Mobile IPv6 in a Real Testbed. Lecture Notes in Computer Science, 181-190. doi:10.1007/11567486_19 es_ES
dc.description.references Chen, W.-M., Chen, W., & Chao, H.-C. (2009). An efficient mobile IPv6 handover scheme. Telecommunication Systems, 42(3-4), 293-304. doi:10.1007/s11235-009-9187-4 es_ES
dc.description.references Perkins C IP mobility support for IPv4, (RFC) 3344, Internet Engineering Task Force (IETF), revised 2010 es_ES
dc.description.references Koodli R Mobile IPv6 fast handovers, (RFC) 5568, Internet Engineering Task Force (IETF) 2009 es_ES
dc.description.references Boutabia, M., & Afifi, H. (2008). MIH-based FMIPv6 optimization for fast-moving mobiles. 2008 Third International Conference on Pervasive Computing and Applications. doi:10.1109/icpca.2008.4783685 es_ES
dc.description.references Machań, P., & Woźniak, J. (2009). Simultaneous handover scheme for IEEE 802.11 WLANs with IEEE 802.21 triggers. Telecommunication Systems, 43(1-2), 83-93. doi:10.1007/s11235-009-9192-7 es_ES
dc.description.references Ryu, S., Lee, K., & Mun, Y. (2010). Optimized fast handover scheme in Mobile IPv6 networks to support mobile users for cloud computing. The Journal of Supercomputing, 59(2), 658-675. doi:10.1007/s11227-010-0459-2 es_ES
dc.description.references Ryu S Mun Y Performance analysis for FMIPv6 considering probability of predictive mode failure Computational Science and its Applications, 2009. ICCSA'09. International Conference on 2009 34 38 es_ES
dc.description.references Kim, D. P., & Koh, S. J. (2009). Performance enhancement of mSCTP for vertical handover across heterogeneous wireless networks. International Journal of Communication Systems, 22(12), 1573-1591. doi:10.1002/dac.1038 es_ES
dc.description.references Xu, C., Teng, J., & Jia, W. (2010). Enabling faster and smoother handoffs in AP-dense 802.11 wireless networks. Computer Communications, 33(15), 1795-1803. doi:10.1016/j.comcom.2010.04.044 es_ES
dc.description.references Zarai, F., Boudriga, N., & Obaidat, M. S. (2006). WLAN-UMTS Integration: Architecture, Seamless Handoff, and Simulation Analysis. SIMULATION, 82(6), 413-424. doi:10.1177/0037549706070275 es_ES
dc.description.references Mussabbir, Q. B., Wenbing Yao, Zeyun Niu, & Xiaoming Fu. (2007). Optimized FMIPv6 Using IEEE 802.21 MIH Services in Vehicular Networks. IEEE Transactions on Vehicular Technology, 56(6), 3397-3407. doi:10.1109/tvt.2007.906987 es_ES
dc.description.references Schmidt, T. C., & Wählisch, M. (2005). Predictive versus Reactive—Analysis of Handover Performance and Its Implications on IPv6 and Multicast Mobility. Telecommunication Systems, 30(1-3), 123-142. doi:10.1007/s11235-005-4321-4 es_ES
dc.description.references Kim, Y.-S., Kwon, D.-H., & Suh, Y.-J. (2007). Seamless handover support over heterogeneous networks using FMIPv6 with definitive L2 triggers. Wireless Personal Communications, 43(3), 919-932. doi:10.1007/s11277-007-9265-4 es_ES
dc.description.references Yoo, S.-J., Cypher, D., & Golmie, N. (2008). Timely Effective Handover Mechanism in Heterogeneous Wireless Networks. Wireless Personal Communications, 52(3), 449-475. doi:10.1007/s11277-008-9633-8 es_ES
dc.description.references Lampropoulos, G., Salkintzis, A. K., & Passas, N. (2008). Media-independent handover for seamless service provision in heterogeneous networks. IEEE Communications Magazine, 46(1), 64-71. doi:10.1109/mcom.2008.4427232 es_ES
dc.description.references Wu, J.-S., Yang, S.-F., & Hwang, B.-J. (2009). A terminal-controlled vertical handover decision scheme in IEEE 802.21-enabled heterogeneous wireless networks. International Journal of Communication Systems, 22(7), 819-834. doi:10.1002/dac.996 es_ES
dc.description.references Lee, K., Kim, M., Yu, C., Lee, B., & Hong, S. (2006). Selective advance reservations based on host movement detection and resource-aware handoff. International Journal of Communication Systems, 19(2), 163-184. doi:10.1002/dac.779 es_ES
dc.description.references Makaya, C., & Pierre, S. (2008). An Analytical Framework for Performance Evaluation of IPv6-Based mobility Management Protocols. IEEE Transactions on Wireless Communications, 7(3), 972-983. doi:10.1109/twc.2008.060725 es_ES
dc.description.references Li, R., Li, J., Wu, K., Xiao, Y., & Xie, J. (2008). An Enhanced Fast Handover with Low Latency for Mobile IPv6. IEEE Transactions on Wireless Communications, 7(1), 334-342. doi:10.1109/twc.2008.060582 es_ES
dc.description.references Yen YS Chen LY Chi TY Chao HC A novel predictive scheduling handover on mobile IPv6 Communications and Networking, 2006. ChinaCom'06. First International Conference on 2006 1 9 es_ES
dc.description.references Xiaohuan Yan, Mani, N., & Cekercioglu, Y. A. (2008). A Traveling Distance Prediction Based Method to Minimize Unnecessary Handovers from Cellular Networks to WLANs. IEEE Communications Letters, 12(1), 14-16. doi:10.1109/lcomm.2008.071430 es_ES
dc.description.references Yan, X., Ahmet Şekercioğlu, Y., & Narayanan, S. (2010). A survey of vertical handover decision algorithms in Fourth Generation heterogeneous wireless networks. Computer Networks, 54(11), 1848-1863. doi:10.1016/j.comnet.2010.02.006 es_ES
dc.description.references Wu, S., Biaz, S., & Wang, H. (2011). Rate adaptation with loss diagnosis on IEEE 802.11 networks. International Journal of Communication Systems, 25(4), 515-528. doi:10.1002/dac.1276 es_ES
dc.description.references Suárez, A., Elbatsh, K. A., & Macías, E. (2010). Gradient RSSI Filter and Predictor for Wireless Network Algorithms and Protocols. Network Protocols and Algorithms, 2(2). doi:10.5296/npa.v2i2.414 es_ES
dc.description.references Holis, J., & Pechac, P. (2008). Elevation Dependent Shadowing Model for Mobile Communications via High Altitude Platforms in Built-Up Areas. IEEE Transactions on Antennas and Propagation, 56(4), 1078-1084. doi:10.1109/tap.2008.919209 es_ES
dc.description.references Pace of Engineering and The MathWorks Products Science Curve Fitting Toolbox 2 UserŠs Guide Revised for Version 2.2 2010 www.mathworks.com/patentsformoreinformation.U.S.patents es_ES
dc.description.references Çeken, C., Yarkan, S., & Arslan, H. (2010). Interference aware vertical handoff decision algorithm for quality of service support in wireless heterogeneous networks. Computer Networks, 54(5), 726-740. doi:10.1016/j.comnet.2009.09.018 es_ES
dc.description.references OMNeT++ OMNeT++ simulator 2011 http://www.omnetpp.org/ es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem