Mostrar el registro sencillo del ítem
dc.contributor.author | Sadiq, Ali Safa | es_ES |
dc.contributor.author | Abu Bakar, Kamalrulnizam | es_ES |
dc.contributor.author | Ghafoor, Kayhan Zrar | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | Mirjalili, SeyedAli | es_ES |
dc.date.accessioned | 2015-07-01T14:19:28Z | |
dc.date.available | 2015-07-01T14:19:28Z | |
dc.date.issued | 2014-07 | |
dc.identifier.issn | 1074-5351 | |
dc.identifier.uri | http://hdl.handle.net/10251/52578 | |
dc.description.abstract | Seamless handover process is essential in order to provide efficient communication between mobile nodes in wireless local area networks. Despite the importance of a signal strength prediction model to provide seamless handovers, it is not embedded in standard mobility management protocols. In this article, we propose a smart handover prediction system based on curve fitting model to perform the handover (CHP) algorithm. The received signal strength indicator parameter, from scanning phase, is considered as an input to the CHP in order to provide a prediction technique for a mobile node to estimate the received signal strength value for the access points in the neighborhood and to select the best candidate access point from them in an intelligent way. We implemented the proposed approach and compared it with standard protocols and linear regression-based handover prediction approach. Simulation results in complex wireless environments show that our CHP approach performs the best by predicting the received signal strength value with up to 800 ms in advance from real obtained value via scanning phase. Moreover, our CHP approach is the best in terms of layer 2 and overall handover latency, in comparison with standard protocols and linear regression approach, respectively. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley: 12 months | es_ES |
dc.relation.ispartof | International Journal of Communication Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Curve fitting model | es_ES |
dc.subject | Smart handover | es_ES |
dc.subject | FMIPv6 | es_ES |
dc.subject | Mobility management | es_ES |
dc.subject | IEEE 802.11 | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | A smart handover prediction system based on curve fitting model for Fast Mobile IPv6 in wireless networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/dac.2386 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.description.bibliographicCitation | Sadiq, AS.; Abu Bakar, K.; Ghafoor, KZ.; Lloret, J.; Mirjalili, S. (2014). A smart handover prediction system based on curve fitting model for Fast Mobile IPv6 in wireless networks. International Journal of Communication Systems. 27(7):969-990. doi:10.1002/dac.2386 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/dac.2386 | es_ES |
dc.description.upvformatpinicio | 969 | es_ES |
dc.description.upvformatpfin | 990 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.senia | 287259 | |
dc.description.references | Mrugalski, T., & Wozniak, J. (2009). Analysis of IPv6 handovers in IEEE 802.16 environment. Telecommunication Systems, 45(2-3), 191-204. doi:10.1007/s11235-009-9244-z | es_ES |
dc.description.references | Cabellos-Aparicio, A., Núñez-Martínez, J., Julian-Bertomeu, H., Jakab, L., Serral-Gracià, R., & Domingo-Pascual, J. (2005). Evaluation of the Fast Handover Implementation for Mobile IPv6 in a Real Testbed. Lecture Notes in Computer Science, 181-190. doi:10.1007/11567486_19 | es_ES |
dc.description.references | Chen, W.-M., Chen, W., & Chao, H.-C. (2009). An efficient mobile IPv6 handover scheme. Telecommunication Systems, 42(3-4), 293-304. doi:10.1007/s11235-009-9187-4 | es_ES |
dc.description.references | Perkins C IP mobility support for IPv4, (RFC) 3344, Internet Engineering Task Force (IETF), revised 2010 | es_ES |
dc.description.references | Koodli R Mobile IPv6 fast handovers, (RFC) 5568, Internet Engineering Task Force (IETF) 2009 | es_ES |
dc.description.references | Boutabia, M., & Afifi, H. (2008). MIH-based FMIPv6 optimization for fast-moving mobiles. 2008 Third International Conference on Pervasive Computing and Applications. doi:10.1109/icpca.2008.4783685 | es_ES |
dc.description.references | Machań, P., & Woźniak, J. (2009). Simultaneous handover scheme for IEEE 802.11 WLANs with IEEE 802.21 triggers. Telecommunication Systems, 43(1-2), 83-93. doi:10.1007/s11235-009-9192-7 | es_ES |
dc.description.references | Ryu, S., Lee, K., & Mun, Y. (2010). Optimized fast handover scheme in Mobile IPv6 networks to support mobile users for cloud computing. The Journal of Supercomputing, 59(2), 658-675. doi:10.1007/s11227-010-0459-2 | es_ES |
dc.description.references | Ryu S Mun Y Performance analysis for FMIPv6 considering probability of predictive mode failure Computational Science and its Applications, 2009. ICCSA'09. International Conference on 2009 34 38 | es_ES |
dc.description.references | Kim, D. P., & Koh, S. J. (2009). Performance enhancement of mSCTP for vertical handover across heterogeneous wireless networks. International Journal of Communication Systems, 22(12), 1573-1591. doi:10.1002/dac.1038 | es_ES |
dc.description.references | Xu, C., Teng, J., & Jia, W. (2010). Enabling faster and smoother handoffs in AP-dense 802.11 wireless networks. Computer Communications, 33(15), 1795-1803. doi:10.1016/j.comcom.2010.04.044 | es_ES |
dc.description.references | Zarai, F., Boudriga, N., & Obaidat, M. S. (2006). WLAN-UMTS Integration: Architecture, Seamless Handoff, and Simulation Analysis. SIMULATION, 82(6), 413-424. doi:10.1177/0037549706070275 | es_ES |
dc.description.references | Mussabbir, Q. B., Wenbing Yao, Zeyun Niu, & Xiaoming Fu. (2007). Optimized FMIPv6 Using IEEE 802.21 MIH Services in Vehicular Networks. IEEE Transactions on Vehicular Technology, 56(6), 3397-3407. doi:10.1109/tvt.2007.906987 | es_ES |
dc.description.references | Schmidt, T. C., & Wählisch, M. (2005). Predictive versus Reactive—Analysis of Handover Performance and Its Implications on IPv6 and Multicast Mobility. Telecommunication Systems, 30(1-3), 123-142. doi:10.1007/s11235-005-4321-4 | es_ES |
dc.description.references | Kim, Y.-S., Kwon, D.-H., & Suh, Y.-J. (2007). Seamless handover support over heterogeneous networks using FMIPv6 with definitive L2 triggers. Wireless Personal Communications, 43(3), 919-932. doi:10.1007/s11277-007-9265-4 | es_ES |
dc.description.references | Yoo, S.-J., Cypher, D., & Golmie, N. (2008). Timely Effective Handover Mechanism in Heterogeneous Wireless Networks. Wireless Personal Communications, 52(3), 449-475. doi:10.1007/s11277-008-9633-8 | es_ES |
dc.description.references | Lampropoulos, G., Salkintzis, A. K., & Passas, N. (2008). Media-independent handover for seamless service provision in heterogeneous networks. IEEE Communications Magazine, 46(1), 64-71. doi:10.1109/mcom.2008.4427232 | es_ES |
dc.description.references | Wu, J.-S., Yang, S.-F., & Hwang, B.-J. (2009). A terminal-controlled vertical handover decision scheme in IEEE 802.21-enabled heterogeneous wireless networks. International Journal of Communication Systems, 22(7), 819-834. doi:10.1002/dac.996 | es_ES |
dc.description.references | Lee, K., Kim, M., Yu, C., Lee, B., & Hong, S. (2006). Selective advance reservations based on host movement detection and resource-aware handoff. International Journal of Communication Systems, 19(2), 163-184. doi:10.1002/dac.779 | es_ES |
dc.description.references | Makaya, C., & Pierre, S. (2008). An Analytical Framework for Performance Evaluation of IPv6-Based mobility Management Protocols. IEEE Transactions on Wireless Communications, 7(3), 972-983. doi:10.1109/twc.2008.060725 | es_ES |
dc.description.references | Li, R., Li, J., Wu, K., Xiao, Y., & Xie, J. (2008). An Enhanced Fast Handover with Low Latency for Mobile IPv6. IEEE Transactions on Wireless Communications, 7(1), 334-342. doi:10.1109/twc.2008.060582 | es_ES |
dc.description.references | Yen YS Chen LY Chi TY Chao HC A novel predictive scheduling handover on mobile IPv6 Communications and Networking, 2006. ChinaCom'06. First International Conference on 2006 1 9 | es_ES |
dc.description.references | Xiaohuan Yan, Mani, N., & Cekercioglu, Y. A. (2008). A Traveling Distance Prediction Based Method to Minimize Unnecessary Handovers from Cellular Networks to WLANs. IEEE Communications Letters, 12(1), 14-16. doi:10.1109/lcomm.2008.071430 | es_ES |
dc.description.references | Yan, X., Ahmet Şekercioğlu, Y., & Narayanan, S. (2010). A survey of vertical handover decision algorithms in Fourth Generation heterogeneous wireless networks. Computer Networks, 54(11), 1848-1863. doi:10.1016/j.comnet.2010.02.006 | es_ES |
dc.description.references | Wu, S., Biaz, S., & Wang, H. (2011). Rate adaptation with loss diagnosis on IEEE 802.11 networks. International Journal of Communication Systems, 25(4), 515-528. doi:10.1002/dac.1276 | es_ES |
dc.description.references | Suárez, A., Elbatsh, K. A., & Macías, E. (2010). Gradient RSSI Filter and Predictor for Wireless Network Algorithms and Protocols. Network Protocols and Algorithms, 2(2). doi:10.5296/npa.v2i2.414 | es_ES |
dc.description.references | Holis, J., & Pechac, P. (2008). Elevation Dependent Shadowing Model for Mobile Communications via High Altitude Platforms in Built-Up Areas. IEEE Transactions on Antennas and Propagation, 56(4), 1078-1084. doi:10.1109/tap.2008.919209 | es_ES |
dc.description.references | Pace of Engineering and The MathWorks Products Science Curve Fitting Toolbox 2 UserŠs Guide Revised for Version 2.2 2010 www.mathworks.com/patentsformoreinformation.U.S.patents | es_ES |
dc.description.references | Çeken, C., Yarkan, S., & Arslan, H. (2010). Interference aware vertical handoff decision algorithm for quality of service support in wireless heterogeneous networks. Computer Networks, 54(5), 726-740. doi:10.1016/j.comnet.2009.09.018 | es_ES |
dc.description.references | OMNeT++ OMNeT++ simulator 2011 http://www.omnetpp.org/ | es_ES |