Resumen:
|
[EN] The Selective Catalytic Reduction of nitrogen oxides (SCR-NOx) is nowadays a very relevant process for reducing NOx emissions in diesel vehicles, which must comply with increasingly restrictive European regulations. ...[+]
[EN] The Selective Catalytic Reduction of nitrogen oxides (SCR-NOx) is nowadays a very relevant process for reducing NOx emissions in diesel vehicles, which must comply with increasingly restrictive European regulations. In this thesis the reaction mechanism and active centers in Cu-zeolite catalysts with different structures has been investigated. For his purpose two in situ spectroscopic techniques were mainly used, being Nuclear Magnetic Resonance NMR and Electron Paramagnetic Resonance EPR, which allowed the detection of reaction intermediates and identification of Cu active species.
In particular we have studied the SCR-NOx reaction using NH3 as the reducing agent and Cu-zeolites catalysts with the chabazite structure. The preliminary study of the interaction of the catalysts with NH3 has shown the formation of several Cu-NH3 complexes with different stability. At SCR typical reaction temperatures (250 ° C), ammonia forms NH4+ ions in Brønsted acids centers of the zeolite and stable Cu+-(NH3) complexes, while Cu2+ remains isolated at the 6R plane, which is precisely the active site. However, when studying species formed on Cu-zeolites in the presence of the reaction mixture NH3/NO/O2, it appears that NH4+ ions are consumed during reaction and the formation of various intermediates including nitrite/nitrate species that decompose at T > 250 ° C to the reaction products (N2 and H2O).
We also investigated the mechanism of the SCR-NOx reaction using C3H8 as the reducing agent and Cu-zeolites of different topology with medium and large pore systems. The results show the formation of a hydrocarbon activated species in the Cu2+ which is related to the catalytic activity. Furthermore, isolated Cu2+ is an active site that is reduced to Cu+ during reaction, and then re-oxidized to Cu2+ in the presence of O2.
Finally, the hydrothermal stability of Cu-zeolites has been studied, since it is a prerequisite for its application as SCR catalysts, comparing the very hydrothermally stable Cu-SSZ-13 zeolite and the Cu-ZSM-5 which is completely disabled after hydrothermal treatment. The findings suggest the origin of the deactivation to be a change in the coordination of isolated Cu2+ in the Cu-ZSM-5 type to form CuAlOx species which are inactive in the SCR-NOx reaction.
[-]
[ES] La Reducción Catalítica Selectiva de óxidos de nitrógeno, SCR-NOx (acrónimo del inglés Selective Catalytic Reduction of NOx) es un proceso muy importante actualmente para la reducción de las emisiones de NOx en vehículos ...[+]
[ES] La Reducción Catalítica Selectiva de óxidos de nitrógeno, SCR-NOx (acrónimo del inglés Selective Catalytic Reduction of NOx) es un proceso muy importante actualmente para la reducción de las emisiones de NOx en vehículos diésel, que deben ajustarse a nuevas normativas europeas más restrictivas. En la presente tesis doctoral se ha investigado el mecanismo de reacción y los centros activos en catalizadores de Cu en zeolitas (Cu-zeolitas) con distintas estructuras. Para ello se han utilizado fundamentalmente dos técnicas espectroscópicas in situ, la resonancia magnética nuclear RMN y la resonancia paramagnética electrónica EPR, que han permitido la detección de intermedios de reacción y la identificación de especies de Cu activas.
En concreto se ha estudiado la reacción SCR-NOx utilizando NH3 como reductor y catalizadores Cu-zeolitas con estructura chabazita. Los resultados obtenidos en el estudio preliminar de la interacción del catalizador con el NH3 muestran la formación de distintos complejos de Cu-NH3 con diferente estabilidad. A la temperatura de reacción (250 °C), el amoniaco forma iones NH4+ en centros ácidos Brønsted de la zeolita y complejos Cu+(NH3) estables, y el Cu2+ permanece aislado en el plano de los anillos 6R, que es precisamente el centro activo. Sin embargo, cuando se estudian las especies formadas con la mezcla de reacción NH3/NO/O2 en las Cu-zeolitas, se observa que los iones NH4+ se consumen en el transcurso de la reacción y la formación de varios intermedios incluyendo nitritos/nitratos que descomponen a T > 250 °C a los productos de reacción (N2 y H2O).
También se ha investigado el mecanismo de la reacción SCR-NOx utilizando C3H8 como reductor y Cu-zeolitas de distinta topología con tamaños de poros medio y grande. Los resultados obtenidos evidencian la formación de una especie activada del hidrocarburo en el Cu2+ que está relacionada con la actividad catalítica. Además el Cu2+ aislado es un centro activo que se reduce a Cu+ en el transcurso de la reacción, y se re-oxida posteriormente a Cu2+ en presencia de O2.
Finalmente, se ha estudiado la estabilidad hidrotermal de las zeolitas con cobre, puesto que es una condición indispensable para su aplicación como catalizadores SCR, comparando la zeolita Cu-SSZ-13 muy estable hidrotermalmente, y la Cu-ZSM-5 que se desactiva por completo tras el tratamiento hidrotermal. Los resultados obtenidos apuntan que el origen de la desactivación es el cambio en la coordinación del Cu2+ en la Cu-ZSM-5 para formar especies tipo CuAlOx inactivas en la reacción.
[-]
[CA] La reducció catalítica selectiva d'òxids de nitrogen, SCR-NOx (acrònim del anglès Selective Catalytic Reduction of NOx) és un procés molt important actualment per a la disminució de les emissions de NOx en vehicles ...[+]
[CA] La reducció catalítica selectiva d'òxids de nitrogen, SCR-NOx (acrònim del anglès Selective Catalytic Reduction of NOx) és un procés molt important actualment per a la disminució de les emissions de NOx en vehicles dièsel, que deuen ajustar-se a les normatives europees més restrictives. En la present tesi doctoral s'ha investigat el mecanisme de reacció i els centres actius en catalitzadors de Cu en zeolites (Cu-zeolites) amb diferents estructures. Per a dur a terme aquesta tasca s'han utilitzat fonamentalment dos tècniques espectroscòpiques in situ, la ressonància magnètica nuclear RMN i la ressonància paramagnètica electrònica EPR, les quals han permès la detecció d'intermedis de reacció i la identificació d'espècies de Cu actives.
Concretament s'ha estudiat la reacció SCR-NOx emprant NH3 com a reductor i catalitzadors Cu-zeolita amb estructura chabacita. Els resultats obtinguts en l'estudi preliminar de la interacció del catalitzador amb NH3 mostren la formació de diversos complexes de Cu-NH3 amb diferent estabilitat. A la temperatura de reacció (250 °C), l'amoníac forma ions NH4+ en centres àcids Brønsted de la zeolita i complexes Cu+(NH3) estables, a més, el Cu2+ roman aïllat en el plànol dels anells 6R, que és precisament el centre actiu. No obstant, quan s'estudien les espècies formades amb la mescla de reacció, NH3/NO/O2 en les Cu-zeolites, s'observa que els ions NH4+ es consumeixen durant la reacció i la formació de diversos intermedis incloent nitrits/nitrats que descomponen, a T > 250 °C, als productes de la reacció (N2 y H2O).
També s'ha estudiat el mecanisme de la reacció SCR-NOx utilitzant C3H8 com a reductor i Cu-zeolites amb diferent topologia amb mides de porus mitges i grans. Els resultats obtinguts evidencien la formació d'una espècie en forma activa del hidrocarbur al Cu2+ que està relacionada amb l'activitat catalítica. A més a més, el Cu2+ aïllat és un centre actiu que és redueix amb el transcurs de la reacció, i es re-oxida posteriorment a Cu2+ en presència de O2.
Finalment, s'estudia l'estabilitat hidrotermal de les zeolites amb coure, puix que és una condició indispensable per a la seua aplicació com a catalitzadors SCR, comparant la zeolita Cu-SSZ-13 que és molt estable hidrotermalment, i Cu-ZSM-5 que es desactiva completament després del tractament hidrotermal. Els resultats obtinguts indiquen que la causa de la desactivació és el canvi en la coordinació del Cu2+ en Cu-ZSM-5 per a formar espècies tipus CuAlOx que són inactives a la reacció.
[-]
|