Mostrar el registro sencillo del ítem
dc.contributor.author | Herrero Debón, Alicia | es_ES |
dc.contributor.author | Thome, Néstor | es_ES |
dc.date.accessioned | 2015-07-02T08:28:32Z | |
dc.date.available | 2015-07-02T08:28:32Z | |
dc.date.issued | 2011-07 | |
dc.identifier.issn | 0893-9659 | |
dc.identifier.issn | 1873-5452 | |
dc.identifier.uri | http://hdl.handle.net/10251/52621 | |
dc.description.abstract | The generalized singular value decomposition (GSVD) and the lifting technique combined with the Kronecker product are exploited to find reflexive and anti-reflexive (with respect to a generalized k+1-reflection matrix P) solutions of the matrix equation AXB=C. The computational cost of the presented algorithm is studied and several numerical examples are presented. © 2011 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | The authors are very grateful to Professor Rafael Bru for his valuable suggestions and to one of the referees for providing Ref. [7] We also thank the three referees for their valuable comments which allowed us to improve the paper. This paper has been partially supported by the DGI project with number MTM2010-18228 and by grant Universidad Politecnica de Valencia, PAID-06-09, Ref.: 2659. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Mathematics Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Matrix equation | es_ES |
dc.subject | Potent matrix | es_ES |
dc.subject | Reflexive solution | es_ES |
dc.subject | Computational costs | es_ES |
dc.subject | Generalized singular value decomposition | es_ES |
dc.subject | Kronecker product | es_ES |
dc.subject | Lifting techniques | es_ES |
dc.subject | Matrix equations | es_ES |
dc.subject | Numerical example | es_ES |
dc.subject | Reflection matrix | es_ES |
dc.subject | Singular value decomposition | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Using the GSVD and the lifting technique to find {P; k+ 1} reflexive and anti-reflexive solutions of AXB = C | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.aml.2011.01.039 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-18228/ES/PROPIEDADES MATRICIALES CON APLICACION A LA TEORIA DE CONTROL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-09-2659/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Herrero Debón, A.; Thome, N. (2011). Using the GSVD and the lifting technique to find {P; k+ 1} reflexive and anti-reflexive solutions of AXB = C. Applied Mathematics Letters. 24(7):1130-1141. https://doi.org/10.1016/j.aml.2011.01.039 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.aml.2011.01.039 | es_ES |
dc.description.upvformatpinicio | 1130 | es_ES |
dc.description.upvformatpfin | 1141 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.senia | 193757 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |