- -

Fourth- and Fifth-order methods for solving systems of equations: an application to the global positioning system

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Fourth- and Fifth-order methods for solving systems of equations: an application to the global positioning system

Show simple item record

Files in this item

dc.contributor.author Abad Rodríguez, Manuel Francisco es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2015-07-02T12:14:23Z
dc.date.available 2015-07-02T12:14:23Z
dc.date.issued 2013
dc.identifier.issn 1085-3375
dc.identifier.issn 1687-0409
dc.identifier.uri http://hdl.handle.net/10251/52643
dc.description.abstract Two iterative methods of order four and five, respectively, are presented for solving nonlinear systems of equations. Numerical comparisons are made with other existing second-and fourth-order schemes to solve the nonlinear system of equations of the Global Positioning System and some academic nonlinear systems. es_ES
dc.description.sponsorship This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT 2011-1-B1-33 Republica Dominicana. The authors would also like to thank the work of the anonymous referee. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Newtons method es_ES
dc.subject iterative methods es_ES
dc.subject Quadrature-formulas es_ES
dc.subject Variants es_ES
dc.subject Order es_ES
dc.subject Convergence es_ES
dc.subject Variables es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Fourth- and Fifth-order methods for solving systems of equations: an application to the global positioning system es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2013/586708
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDOCYT//2011-1-B1-33/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Abad Rodríguez, MF.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2013). Fourth- and Fifth-order methods for solving systems of equations: an application to the global positioning system. Abstract and Applied Analysis. 2013. https://doi.org/10.1155/2013/586708 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2013/586708 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2013 es_ES
dc.relation.senia 257733
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana es_ES
dc.description.references Weerakoon, S., & Fernando, T. G. I. (2000). A variant of Newton’s method with accelerated third-order convergence. Applied Mathematics Letters, 13(8), 87-93. doi:10.1016/s0893-9659(00)00100-2 es_ES
dc.description.references Özban, A. . (2004). Some new variants of Newton’s method. Applied Mathematics Letters, 17(6), 677-682. doi:10.1016/s0893-9659(04)90104-8 es_ES
dc.description.references Gerlach, J. (1994). Accelerated Convergence in Newton’s Method. SIAM Review, 36(2), 272-276. doi:10.1137/1036057 es_ES
dc.description.references Cordero, A., & Torregrosa, J. R. (2006). Variants of Newton’s method for functions of several variables. Applied Mathematics and Computation, 183(1), 199-208. doi:10.1016/j.amc.2006.05.062 es_ES
dc.description.references Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 es_ES
dc.description.references Frontini, M., & Sormani, E. (2004). Third-order methods from quadrature formulae for solving systems of nonlinear equations. Applied Mathematics and Computation, 149(3), 771-782. doi:10.1016/s0096-3003(03)00178-4 es_ES
dc.description.references Cordero, A., & Torregrosa, J. R. (2010). On interpolation variants of Newton’s method for functions of several variables. Journal of Computational and Applied Mathematics, 234(1), 34-43. doi:10.1016/j.cam.2009.12.002 es_ES
dc.description.references Darvishi, M. T., & Barati, A. (2007). A fourth-order method from quadrature formulae to solve systems of nonlinear equations. Applied Mathematics and Computation, 188(1), 257-261. doi:10.1016/j.amc.2006.09.115 es_ES
dc.description.references Babajee, D. K. R., Dauhoo, M. Z., Darvishi, M. T., & Barati, A. (2008). A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule. Applied Mathematics and Computation, 200(1), 452-458. doi:10.1016/j.amc.2007.11.009 es_ES
dc.description.references Darvishi, M. T., & Barati, A. (2007). A third-order Newton-type method to solve systems of nonlinear equations. Applied Mathematics and Computation, 187(2), 630-635. doi:10.1016/j.amc.2006.08.080 es_ES
dc.description.references Darvishi, M. T., & Barati, A. (2007). Super cubic iterative methods to solve systems of nonlinear equations. Applied Mathematics and Computation, 188(2), 1678-1685. doi:10.1016/j.amc.2006.11.022 es_ES
dc.description.references Cordero, A., Martínez, E., & Torregrosa, J. R. (2009). Iterative methods of order four and five for systems of nonlinear equations. Journal of Computational and Applied Mathematics, 231(2), 541-551. doi:10.1016/j.cam.2009.04.015 es_ES
dc.description.references Babajee, D. K. R., Dauhoo, M. Z., Darvishi, M. T., Karami, A., & Barati, A. (2010). Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 233(8), 2002-2012. doi:10.1016/j.cam.2009.09.035 es_ES
dc.description.references Sharma, J. R., Guha, R. K., & Sharma, R. (2012). An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numerical Algorithms, 62(2), 307-323. doi:10.1007/s11075-012-9585-7 es_ES
dc.description.references Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z es_ES
dc.description.references Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860 es_ES
dc.description.references Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8 es_ES
dc.description.references King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072 es_ES
dc.description.references Arroyo, V., Cordero, A., & Torregrosa, J. R. (2011). Approximation of artificial satellites’ preliminary orbits: The efficiency challenge. Mathematical and Computer Modelling, 54(7-8), 1802-1807. doi:10.1016/j.mcm.2010.11.063 es_ES
dc.description.references Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2012). Pseudocomposition: A technique to design predictor–corrector methods for systems of nonlinear equations. Applied Mathematics and Computation, 218(23), 11496-11504. doi:10.1016/j.amc.2012.04.081 es_ES


This item appears in the following Collection(s)

Show simple item record