Mostrar el registro sencillo del ítem
dc.contributor.author | Andreu Estellés, Carlos | es_ES |
dc.contributor.author | Cambil Teba, Noelia | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2015-07-02T12:24:56Z | |
dc.date.available | 2015-07-02T12:24:56Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.issn | 1687-0409 | |
dc.identifier.uri | http://hdl.handle.net/10251/52645 | |
dc.description.abstract | A modified classical method for preliminary orbit determination is presented. In our proposal, the spread of the observations is considerably wider than in the original method, as well as the order of convergence of the iterative scheme involved. The numerical approach is made by using matricial weight functions, which will lead us to a class of iterative methods with a sixth local order of convergence. This is a process widely used in the design of iterative methods for solving nonlinear scalar equations, but rarely employed in vectorial cases. The numerical tests confirm the theoretical results, and the analysis of the dynamics of the problem shows the stability of the proposed schemes. | es_ES |
dc.description.sponsorship | The authors thank the anonymous referees for their valuable comments and suggestions. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Abstract and Applied Analysis | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Solve systems | es_ES |
dc.subject | Order | es_ES |
dc.subject | Convergence | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Preliminary orbit determination of artificial satellites: a vectorial sixth-order approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2013/960582 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Andreu Estellés, C.; Cambil Teba, N.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2013). Preliminary orbit determination of artificial satellites: a vectorial sixth-order approach. Abstract and Applied Analysis. 2013. https://doi.org/10.1155/2013/960582 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2013/960582 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2013 | es_ES |
dc.relation.senia | 257737 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Fidkowski, K. J., Oliver, T. A., Lu, J., & Darmofal, D. L. (2005). p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. Journal of Computational Physics, 207(1), 92-113. doi:10.1016/j.jcp.2005.01.005 | es_ES |
dc.description.references | Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0 | es_ES |
dc.description.references | He, Y., & Ding, C. H. Q. (2001). The Journal of Supercomputing, 18(3), 259-277. doi:10.1023/a:1008153532043 | es_ES |
dc.description.references | Revol, N., & Rouillier, F. (2005). Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library. Reliable Computing, 11(4), 275-290. doi:10.1007/s11155-005-6891-y | es_ES |
dc.description.references | Babajee, D. K. R., Dauhoo, M. Z., Darvishi, M. T., & Barati, A. (2008). A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule. Applied Mathematics and Computation, 200(1), 452-458. doi:10.1016/j.amc.2007.11.009 | es_ES |
dc.description.references | Darvishi, M. T., & Barati, A. (2007). A third-order Newton-type method to solve systems of nonlinear equations. Applied Mathematics and Computation, 187(2), 630-635. doi:10.1016/j.amc.2006.08.080 | es_ES |
dc.description.references | Darvishi, M. T., & Barati, A. (2007). Super cubic iterative methods to solve systems of nonlinear equations. Applied Mathematics and Computation, 188(2), 1678-1685. doi:10.1016/j.amc.2006.11.022 | es_ES |
dc.description.references | Cordero, A., Martínez, E., & Torregrosa, J. R. (2009). Iterative methods of order four and five for systems of nonlinear equations. Journal of Computational and Applied Mathematics, 231(2), 541-551. doi:10.1016/j.cam.2009.04.015 | es_ES |
dc.description.references | Babajee, D. K. R., Dauhoo, M. Z., Darvishi, M. T., Karami, A., & Barati, A. (2010). Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 233(8), 2002-2012. doi:10.1016/j.cam.2009.09.035 | es_ES |
dc.description.references | Soleymani, F., Lotfi, T., & Bakhtiari, P. (2013). A multi-step class of iterative methods for nonlinear systems. Optimization Letters, 8(3), 1001-1015. doi:10.1007/s11590-013-0617-6 | es_ES |
dc.description.references | Awawdeh, F. (2009). On new iterative method for solving systems of nonlinear equations. Numerical Algorithms, 54(3), 395-409. doi:10.1007/s11075-009-9342-8 | es_ES |
dc.description.references | Babajee, D. K. R., Cordero, A., Soleymani, F., & Torregrosa, J. R. (2012). On a Novel Fourth-Order Algorithm for Solving Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-12. doi:10.1155/2012/165452 | es_ES |
dc.description.references | Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2012). Pseudocomposition: A technique to design predictor–corrector methods for systems of nonlinear equations. Applied Mathematics and Computation, 218(23), 11496-11504. doi:10.1016/j.amc.2012.04.081 | es_ES |
dc.description.references | Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2013). Increasing the order of convergence of iterative schemes for solving nonlinear systems. Journal of Computational and Applied Mathematics, 252, 86-94. doi:10.1016/j.cam.2012.11.024 | es_ES |
dc.description.references | Soleymani, F., & Stanimirović, P. S. (2013). A Higher Order Iterative Method for Computing the Drazin Inverse. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/708647 | es_ES |
dc.description.references | Soleymani, F., Stanimirović, P. S., & Ullah, M. Z. (2013). An accelerated iterative method for computing weighted Moore–Penrose inverse. Applied Mathematics and Computation, 222, 365-371. doi:10.1016/j.amc.2013.07.039 | es_ES |
dc.description.references | Sharma, J. R., Guha, R. K., & Sharma, R. (2012). An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numerical Algorithms, 62(2), 307-323. doi:10.1007/s11075-012-9585-7 | es_ES |
dc.description.references | Sharma, J. R., & Arora, H. (2013). On efficient weighted-Newton methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 222, 497-506. doi:10.1016/j.amc.2013.07.066 | es_ES |
dc.description.references | Abad, M. F., Cordero, A., & Torregrosa, J. R. (2013). Fourth- and Fifth-Order Methods for Solving Nonlinear Systems of Equations: An Application to the Global Positioning System. Abstract and Applied Analysis, 2013, 1-10. doi:10.1155/2013/586708 | es_ES |
dc.description.references | Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z | es_ES |
dc.description.references | Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8 | es_ES |
dc.description.references | Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 | es_ES |
dc.description.references | Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/780153 | es_ES |